
Applying Parametric
Search to Voting Games

and Fréchet Queries

Sampson Wong

School of Computer Science, University of Sydney

A thesis submitted to fulfil requirements for the degree of Master of Philosophy

Abstract

Parametric search, invented by Nimrod Megiddo in 1983, is a complex yet pow-
erful technique for solving general optimisation problems. It has since become
a cornerstone technique in computational geometry and has led to efficient al-
gorithms for a wide variety of problems.

In this thesis, we apply parametric search to voting games and Fréchet
queries. The connection between voting games and computational geometry
is a relatively recent one, and as such, geometric optimisation techniques are
not commonly used for solving problems in voting games. We apply parametric
search to compute the yolk, which is an important concept in spatial voting
games. The connection between the Fréchet distance and parametric search
is much more well understood. Our contribution is using repeated inductive
applications of parametric search to achieve efficient queries for a variant of a
Fréchet distance problem.

1

Statement of Attribution

Chapter 2 of this thesis is a conference paper published as: Joachim Gud-
mundsson and Sampson Wong. Computing the yolk in spatial voting games
without computing median lines. In Thirty Third AAAI Conference on Aritifi-
cial Intelligence, AAAI 2019, pages 2012-2019, 2019. I was the corresponding
author and the main contributor of the paper.

Chapter 3 of this thesis is an unpublished manuscript to be submitted:
Joachim Gudmundsson, André van Renssen, Zeinab Saedi and Sampson Wong.
Translation invariant Fréchet distance queries. Under Submission. My supervi-
sor was the corresponding author and I was one of the main contributors of the
paper.

As supervisor for the candidature upon which this thesis is based, I can con-
firm that the authorship attribution statements above are correct.

Joachim Gudmundsson

2

Statement of Originality

This is to certify that to the best of my knowledge, the content of this thesis
is my own work. This thesis has not been submitted for any degree or other
purposes.

I certify that the intellectual content of this thesis is the product of my own
work and that all the assistance received in preparing this thesis and sources
have been acknowledged.

Sampson Wong

3

Acknowledgements

I thank my supervisor, Joachim Gudmundsson, for his expertise, patience and
guidance throughout my Master’s candidature. It has been an absolute blast
working with you and I look forward to our continued research together.

I would like to extend my thanks to my co-authors and collaborators. Jonathan
Chung, André van Renssen and Zeinab Saedi; Vikrant Ashvinkumar, Mees van
de Kerkhof, Yuan Sha, Frank Staals, William Umboh and Lionov Wiratma.
Our research discussions have been both fun and engaging, and I have learnt so
much from you all.

I would also like to thank the rest of the Sydney Algorithms Group for
the lunch break chats and the great working atmosphere: Milutin Brankovic,
Patrick Eades, Julian Mestre, John Pfeifer and Martin Seybold.

I thank Ralph Holz for agreeing to be my initial auxiliary supervisor.

4

Contents

1 Introduction 7

2 Computing the Yolk in Spatial Voting Games 9
2.1 Decision Algorithm . 12
2.2 Parametric Search . 15

2.2.1 Preliminaries . 15
2.2.2 Applying the technique 16

2.3 Computing Critical Hyperplanes 17
2.4 Subroutine 1 . 18
2.5 Subroutine 2 . 19
2.6 Computing the Yolk in L1, L2, and L∞ 21
2.7 Concluding Remarks . 22

3 Translation Invariant Fréchet Distance Queries 23
3.1 Preliminaries . 25
3.2 Computing the Fréchet Distance 27

3.2.1 Improving the Number of Critical Values 30
3.3 Minimizing the Fréchet Distance Under Vertical Translation . . . 33
3.4 Minimizing the Fréchet Distance for Arbitrary Placement 35
3.5 Concluding Remarks . 40

5

List of Figures

2.1 The L2 yolk intersects all median lines of voters. 10
2.2 Example of yolks in the L1 and L∞ metrics. 11
2.3 The regular, k-sided polygon Pk(r, x, y). 12
2.4 The relative positions of mg, tU (g) and tD(g) if mg intersects the

k-sided regular polygon Pk(r, x, y). 13
2.5 The rotating sweepline t and the open halfplane t+. 14
2.6 Point p is above Lg,v(r, x, y) if and only if parameter (r, x, y) is

above Hp,g,v. 17
2.7 The ith partition of Pk(r, x, y). 18
2.8 The lines ti, tj , ij partition the plane into regions L,R,U,D. . . 19
2.9 The relative orders shown for when (i) p, q ∈ L, (ii) p, q ∈

R, ((iii) p, q ∈ U and (iv) p ∈ U, q ∈ D. 20
2.10 The polygon Pk(r2 · sec π

k , x2, y2) is externally tangent to the
disk B(r2, x2, y2). 22

3.1 For each y-coordinate, Left: the point with minimum backward
pair distance, Right: the minimum backward pair distance. . . . 26

3.2 The points p′ and q′ mapped to the vertices pu and pv of the
trajectory. 27

3.3 The point µ(pu) lies between two consecutive elements sL and sR.
Distances that are greater than d are thin solid and distances that
are at most d are dotted, where d is the Fréchet distance. 31

3.4 Finding a horizontal segment ly in the vertical strip between x1
and x2 that minimises the Fréchet distance between ly and π[u, v]. 33

3.5 Determining where lc should be moved to reduce the Fréchet
distance. 37

3.6 The case where we have three C1 terms. 38
3.7 Reduce the Fréchet distance when it is determined by a term of

C1 and a term of C2. 38
3.8 The decision algorithm is a convex function with respect to the

left endpoint of the line segment. 39

6

Chapter 1

Introduction

Parametric search, invented by Nimrod Megiddo [40], is a complex yet powerful
technique for solving general optimisation problems. The technique has since
become a cornerstone of geometric optimisation [2]. In computational geometry,
parametric search has led to efficient algorithms for the Fréchet distance [5],
variants of the Fréchet distance [6, 11, 23], the ham sandwich cut [15], the
slope selection problem (or Theil-Sen estimator in statistics) [14], the Euclidean
2-center problem [55], and ray shooting [1], just to name a few.

The technique can be summarised as follows. Let λ ∈ R be a parameter
and let D(λ) be a decision problem that evaluates to either true or false for
each value of λ. Suppose our optimisation problem is to compute the minimum
value of λ so that D(λ) evaluates to true. To apply Megiddo’s [40] technique,
we require the following three properties:

Property 1. The decision problem D(λ) is monotone. Formally, if D(λ0)
evaluates to true, then D(λ) evaluates to true for any λ > λ0.

Property 2. A decision algorithmA(λ) evaluates the decision problemD(λ) for
any value of λ. The inputs to A(λ) are the parameter λ along with data objects
independent of λ. Let pi ∈ A(λ) be a single operation in the algorithm A(λ).
If pi operates only on the data objects independent of λ, then there are no
requirements on pi. If pi operates on λ as well as the data objects independent
of λi, then we require that the step pi be equivalent to making a constant
number of comparisons {λ > ci} for some constants {ci}. The constants ci can
depend only on the data objects and not on the parameter λ. The constants ci
are called the critical values associated with the step pi ∈ A(λ).

Property 3. The decision algorithm A(λ) has a serial running time of Ts.
Given P processors, the decision algorithm A(λ) has a parallel running time
of Tp per processor.

If the above three properties hold, then the technique states that there is
an O(PTp + TpTs logP) time algorithm to compute the minimum value of λ so

7

that D(λ) evaluates to true. This running time is usually only a polylogarith-
mic factor slower than the running time of the decision algorithm. The stated
running time is a serial running time, but interestingly, it depends on the pa-
rameters P and Tp which are the parallel processors and parallel running times
of the decision algorithm respectively. The proof of correctness for this optimi-
sation algorithm can be found in [2]. There are two noteworthy extensions to
the parametric search technique.

The first extension is Cole’s extension of parametric search [13]. This ex-
tension states that the running time of the optimisation algorithm of Megiddo’s
can be improved by a logarithmic factor to O(PTp + TsTp), if following condi-
tion is met: that all pi that generate the critical values ci are part of sorting
operations, and that all such sorting operations can be replaced by the AKS
parallel sorting scheme [3]. We do not use Cole’s extension in this thesis but we
suspect that it may be able to be applied to some of our results.

The second extension is that parametric search can be used to solve multidi-
mensional problems. Multidimensional parametric search is the main technique
we use in Chapter 2, and we give an overview of the technique in that chapter.

In this thesis, we apply parametric search to voting games and to Fréchet
queries. The connection between voting games and computational geometry is
a relatively recent one, and as such, geometric optimisation techniques are not
commonly used for solving problems in voting games. We apply parametric
search to compute the yolk, which is an important concept in spatial voting
games. The connection between the Fréchet distance and parametric search
is much more well understood. Our contribution is using repeated inductive
applications of parametric search to achieve efficient queries for a variant of a
Fréchet distance problem.

For voting games we focus on a geometric setting, referred to as the spatial
model of voting. In this model, the yolk is an important concept and has
connections to the pure Nash equilibrium and the uncovered set. In Chapter 2,
we present near-linear time algorithms for computing the yolk in the plane. To
the best of our knowledge our algorithm is the first that does not precompute
median lines, and hence is able to break the best known upper bound of O(n4/3)
given by the number of limiting median lines.

In Chapter 3, we consider a well studied variant of the Fréchet distance
known as the Translation Invariant Fréchet distance. This variant is motivated
by some applications where it is desirable to match the curves under translation
before computing the Fréchet distance between them. Algorithms to compute
the Translation Invariant Fréchet distance are known [6, 11, 33, 67], however
the query version is much less well understood. We study Translation Invariant
Fréchet distance queries in a restricted setting of horizontal query segments.
More specifically, we preprocess a trajectory in O(n2 log2 n) time and space, such
that for any subtrajectory and any horizontal query segment we can compute
their Translation Invariant Fréchet distance in O(polylog n) time.

8

Chapter 2

Computing the Yolk in
Spatial Voting Games

Voting theory is concerned with preference aggregation and group decision mak-
ing. A classic framework for aggregating voter’s preferences is the Downsian [20],
or spatial model of voting.

In this model, voters are positioned on a ‘left-right’ continuum along multiple
ideological dimensions, such as economic, social or religious. These dimensions
together form the policy space. Each voter is required to choose a single can-
didate from a set of candidates, and a common voter preference function is a
metric/distance function within the policy space. An intuitive reason behind
using metric preferences is that voters tend to prefer candidates ideologically
similar to themselves.

The spatial model of voting with metric preferences have been studied ex-
tensively, both theoretically [22, 37, 38, 43, 62] and empirically [44, 46, 47, 48,
52, 53, 54]. Recently, lower bounds were provided on the distortion of voting
rules in the spatial model, and interestingly, metrics other than the Euclidean
metric were considered [7, 30, 56].

We focus our attention on two-candidate spatial voting games, where the
winner is the candidate preferred by a simple majority of voters. In a one
dimension policy space, Black’s Median Voter Theorem [8] states that a voting
equilibrium (alt. Condorcet winner, plurality point, pure Nash equilibrium) is
guaranteed to exist and coincides with the median voter.

Naturally, social choice theorists searched for the equilibrium in the two
dimensional policy space, but these attempts were shown to be fruitless [45].
The initial reaction was one of cynicism [37], but in response a multitude of
generalisations were developed, with the yolk being one such concept [38, 43].
The yolk in the Euclidean L2 metric is defined as the minimum radius disk that
intersects all median lines of the voters.

The yolk is an important concept in spatial voting games due to its simplicity
and its relationship to other concepts. The yolk radius provides approximate

9

L2

Figure 2.1: The L2 yolk intersects all median lines of voters.

bounds on the uncovered set [25, 42, 43], limits on agenda control [27], Shapley-
Owen power scores [24], the Finagle point [68] and the ε-core [65]. As such,
studies on the size of the yolk [26, 35, 63] translate to these other concepts as
well.

From the perspective of computational social choice, this raises the following
problem: Are there efficient algorithms for computing the yolk? Fast algorithms
would, for instance, facilitate empirical studies on large data sets. Tovey [61]
provides the first polynomial time algorithm, which in two dimensions, computes
the yolk inO(n4) time. De Berg et al. [17] provides an improvedO(n4/3 log1+ε n)
time algorithm for the same.

The shortcoming of existing algorithms is that they require the computation
of all limiting median lines, which are median lines that pass through at least
two voters [58]. However, there are Ω(ne

√
logn) [60] limiting median lines in the

worst case. Moreover, the best known upper bound of O(n4/3) seems difficult to
improve on [19]. It is an open problem as to whether there is a faster algorithm
that computes the yolk without precomputing all limiting median lines.

Problem Statement

Given a set V of n points in the plane, a median line of V is any line that divides
the plane into two closed halfplanes, each with at most n/2 points. The yolk is
a minimum radius disk in the Lp metric that intersects all median lines of V .

We compute yolks in the L1 (Taxicab), the L2 (Euclidean), and the L∞
(Uniform) metrics. As shown in Figure 2.2, the yolk in L1 is the smallest 45◦-
rotated square and in L∞ the smallest axis-parallel square, that intersects all
median lines of V .

10

L1
L∞

Figure 2.2: Example of yolks in the L1 and L∞ metrics.

Our Contribution and Results

Our contributions are, first, an algorithm that computes the yolk in the L1

and L∞ metrics in O(n log7 n) time, and second, an algorithm that computes
a (1 + ε)-approximation of the yolk in the L2 metric in O(n log7 n · log4 1

ε) time.
We achieve the improved upper bounds by carefully applying Megiddo’s [40]

parametric search technique, which is a powerful yet complex technique and
that could be useful for other spatial voting problems.

The parametric search technique is a framework for converting decision algo-
rithms into optimisation algorithms. For the yolk problem, a decision algorithm
would decide whether a given disk intersects all median lines. If this deci-
sion algorithm satisfies the three properties as specified by the framework, then
Megiddo’s result states that there is an efficient algorithm to compute the yolk.

For the purposes of designing a decision algorithm with the desired prop-
erties, we instead consider the more general problem of finding the smallest
regular, k-sided polygon that intersects all median lines of V . The regular k-
sided polygon Pk(r, x, y) is shown in Figure 2.3 and is defined as:

Definition 1. Given an integer k ≥ 3, construct the regular k-sided poly-
gon Pk(r, x, y) by:

• Constructing a circle with radius r and centered at (x, y).

• Placing a vertex at the top-most point on the circle, i.e. at (x, y + r).

• Placing the remaining k−1 vertices around the circle so that the k vertices
are evenly spaced.

In Section 2.1, we present the decision algorithm, which given a regular, k-
sided polygon Pk(r, x, y), decides whether the polygon intersects all median lines
of V . Next, in Section 2.2, we apply Megiddo’s technique to the decision al-
gorithm and prove the convexity and parallelisability properties. This leaves
one final property, the existence of critical hyperplanes, left to check. We prove
this final property in Sections 4-6, thus completing the parametric search. Fi-
nally, in Section 7, we show that our general problem for the regular, k-sided
polygon Pk(r, x, y) implies the claimed running times by setting k = 4 for L1

and L∞, and k = 1
ε for L2.

11

(x, y)

(x, y + r)

Pk(r, x, y)

Figure 2.3: The regular, k-sided polygon Pk(r, x, y).

2.1 Decision Algorithm

The aim of this section is to design an algorithm that solves the following deci-
sion problem:

Definition 2. Given an integer k ≥ 3 and a set V of n points in the plane,
the decision problem Dk,V (r, x, y) is to decide whether the polygon Pk(r, x, y)
intersects all median lines of V .

We show that there is a comparison-based decision algorithm that solves
Dk,V (r, x, y) in O(n log n · log k) time, provided the following two comparison-
based subroutines.

Subroutine 1. A comparison-based subroutine that, given a point p and a regu-
lar k-sided polygon Pk(r, x, y), in O(log k) time decides if p is outside Pk(r, x, y).

Subroutine 2. A comparison-based subroutine that, given points p, q outside
a regular k-sided polygon Pk(r, x, y), in O(log k) time sorts in a clockwise order
the four tangent lines drawn through {p, q} and tangent to Pk(r, x, y).

Although the running time of these two subroutines are not too difficult to
prove, we shall see in Section 3 that these subroutines must satisfy a stronger
requirement for the parametric search technique to apply. We will formally
define the stronger requirement in the next section. To avoid repetition, we si-
multaneously address the subroutine and the stronger requirement in Sections 5
and 6. But for now, we assume the subroutines exist and present the decision
algorithm:

Theorem 1. Given an integer k ≥ 3 and a set V of n points in the plane, there
is a comparison-based algorithm that solve the decision problem Dk,V (r, x, y)
in O(n log n · log k) time, provided that Subroutine 1 and Subroutine 2 exist.

Proof. The proof comes in three parts. First, we transform the decision prob-
lem Dk,V (r, x, y) into an equivalent form that does not have median lines in its

12

statement. Then, we present a sweep line algorithm for the transformed version.
Finally, we perform an analysis of the running time.

Consider for now a single median line mg that has gradient g. Construct
two parallel lines tU (g) and tD(g) that also have gradient g, but are tangent
to Pk(r, x, y) from above and below respectively. If the median line mg inter-
sects Pk(r, x, y), as shown in Figure 2.4, then mg must be in between tU (g)
and tD(g).

Pk(r, x, y)

mg

tU (g)

tD(g)

Figure 2.4: The relative positions of mg, tU (g) and tD(g) if mg intersects the
k-sided regular polygon Pk(r, x, y).

We will decide whether all median lines of gradient g are between tU (g)
and tD(g), as this would immediately decide whether all median lines of gra-
dient g intersects Pk(r, x, y). We will solve this restricted decision problem by
counting the number of points in V above tU (g) and the number of points in V
below tD(g).

Let t+U (g) be the number of points in V that are above tU (g), and sim-
ilarly t−D(g) for the points in V below tD(g). Suppose that t+U (g) < n/2
and t−D(g) < n/2. Then there cannot be a median line of gradient g above tU (g)
or below tD(g), since one side of the median line, in particular the side that
contains the polygon, will have more than n/2 points. Hence, if t+U (g) < n/2
and t−D(g) < n/2, then all median lines of gradient g must be between tU (g)
and tD(g).

Conversely, suppose that all median lines of gradient g are between tU (g)
and tD(g). Then if t+U (g) ≥ n/2, we can move tU (g) continuously upwards
until it becomes a median line, which is a contradiction. So in this case, we
know t+U (g) < n/2 and t−D(g) < n/2.

In summary, we have transformed the decision problem into one that does
not have median lines in its statement: All median lines intersect Pk(r, x, y) if
for all gradients g, the pair of inequalities t+U (g) < n/2 and t−D(g) < n/2 hold.

We present a sweep line algorithm that computes whether the pair of in-
equalities hold for all gradients g. Let t be an arbitrary line tangent to the
polygon Pk(r, x, y), and define t+ to be the open halfplane that has t as its
boundary and does not include the polygon Pk(r, x, y). Then all median lines

13

intersect Pk(r, x, y) if and only if for all positions of t, the open halfplane t+

contains less than n/2 points.

Pk(r, x, y)

t

t+

Figure 2.5: The rotating sweepline t and the open halfplane t+.

The tangent line t is a clockwise rotating sweep line and the invariant main-
tained by the sweep line algorithm is the number of points of V inside the
region t+. Take any tangent line t0 to be the starting line, and calculate the
number of points in t+0 . From here, define an event to be when the line t passes
through a point. There are two events for each point outside Pk(r, x, y); there
is one event for when the point enters the region t+, and one for when it exits.
There are no events for points of V that lie inside Pk(r, x, y).

The sweepline algorithm first computes the set of events, then sorts the set
of events, and finally processes each event one by one.

First use Subroutine 1 to decide which points of V are outside Pk(r, x, y).
Each point outside of V gives two events, as noted in the paragraph above.
This takes O(n log k) time in total. Next, we sort the set of events. To decide
which of the two events occur first in the clockwise order, we only need to make
a single call to Subroutine 2, which takes O(log k) time. To completely sort
all O(n) events, we require an efficient comparison-based sorting algorithm, for
example Merge sort, which will make O(n log n) calls to Subroutine 2. This
takes O(n log n log k) time in total. Finally, we process the events one by one to
maintain our invariant, which we recall is the number of points of V inside the
region t+. This value increases by one at “entry” events and decreases by one
at “exit” events. This takes O(n) time. After processing all events we return
whether our invariant remained less than n/2 at all events. The total running
time is dominated by sorting the set of events, which takes O(n log n · log k)
time.

14

2.2 Parametric Search

Parametric search is a powerful yet complex technique for solving optimisation
problems. The two steps involved in this technique are, first, to design a decision
algorithm, and second, to convert the decision algorithm into an optimisation
algorithm.

For example, our parameter space is (r, x, y) ∈ R3, our decision algorithm is
stated in Theorem 1, and our optimisation objective is to minimise r ∈ R+.

2.2.1 Preliminaries

Megiddo’s (1983) states the requirements for converting the decision algorithm
into an optimisation algorithm. First, let us introduce some notation. Let Rd
be a parameter space, let λ ∈ Rd be a parameter and let D(λ) be a decision
problem that either evaluates to true or false. Then the first requirement is for
the decision problem D(λ).

Property 1. The set of parameters {λ ∈ Rd : D(λ)} that satisfies the decision
problem is convex.

Convexity guarantees that the optimisation algorithm finds the global opti-
mum.

The second property of the technique relates to the decision algorithm.
Let A(λ) be a comparison-based decision algorithm that computes D(λ). Let
C(λ) be any comparison in the comparison-based decision algorithm A(λ). The
comparison C(λ) is said to have an associated critical hyperplane in Rd if the
result of the comparison is linearly separable with respect to λ ∈ Rd. Formally,
suppose that the comparison C(λ) evaluates to either >, = or <. Then we
say that the (d − 1)-dimensional hyperplane H ⊂ Rd is the associated critical
hyperplane of C(λ) if C evaluates to >, = or < if and only if λ is above, on, or
below H respectively. The comparisons of the decision algorithm must satisfy
the following property.

Property 2. Every comparison C(λ) in the comparison-based decision algo-
rithm A(λ) either (i) does not depend on λ, or (ii) has an associated critical
hyperplane in Rd.

This requirement allows us to compute a large set of critical hyperplanes
that determines the result of A(λ). Moreover, the optimum must lie on one of
these critical hyperplanes, since the result of A(λ) locally changes sign at the
optimum. The new search space now has dimension d− 1 instead of dimension
d, and we can recursively apply this procedure to reduce the dimension further.
For details see [2].

The final property speeds up the parametric search.

Property 3. The decision algorithm has an efficient parallel algorithm.

If the decision algorithm A(λ) runs in Ts time and runs on P processors
in Tp parallel steps, then the parametric search over λ ∈ Rd runs in O(TpP +
Ts(Tp logP)d) time [2].

15

2.2.2 Applying the technique

To apply the parametric search technique, we show that our decision prob-
lem Dk,V (r, x, y) satisfies Properties 1-3.

Lemma 1. Given an integer k ≥ 3 and a set V of n points in the plane, the
set of parameters {(r, x, y) : Dk,V (r, x, y)} that satisfies the decision problem is
convex.

Proof. Suppose we are given a convex combination λ3 = αλ1 + (1−α)λ2 of the
two parameters λ1, λ2 ∈ R3. Then the polygon Pk(λ3) is a convex combination
of the polygons Pk(λ1) and Pk(λ2). It is easy to check that if a line m inter-
sects both Pk(λ1) and Pk(λ2), then the line m must also intersect the convex
combination Pk(λ3).

Now assume that both Dk,V (λ1) and Dk,V (λ2) are true. Then for any me-
dian line m both Pk(λ1) and Pk(λ2) intersect m. By the observation above, the
convex combination Pk(λ3) must also intersects m. Repeating this fact for all
median lines implies that Pk(λ3) intersects all median lines of V . So Dk,V (λ3)
is true whenever Dk,V (λ1) and Dk,V (λ2) are true. Therefore, the set of param-
eters {(r, x, y) ⊆ R3 : Dk,V (r, x, y)} is convex.

Lemma 2. Every comparison in the decision algorithm in Theorem 1 either (i)
does not depend on (r, x, y), or (ii) has an associated critical hyperplane in R3.

Proof. Theorem 1 consists of three steps, computing the points outside the poly-
gon, computing the event order, and processing the events. For the first two
steps, the comparisons do depend on (r, x, y) and have associated critical hyper-
planes. We defer the proof of this claim to Sections 2.4 and 2.5 respectively. For
the third step, the comparisons do not depend on (r, x, y) but rather the event
order, so there is no requirement that comparisons have critical hyperplanes.

Lemma 3. Given n processors, the decision algorithm in Theorem 1 has a
parallel running time of O(log n · log k) per processor.

Proof. Given n processors, we show how to parallelise the key steps of the
decision algorithm in Theorem 1. The key steps are computing the events,
sorting the events, and processing the events. For computing the events, we
need to decide which points are outside the polygon with Subroutine 1. If
we assign one processor to each point of V then the parallel running time is
O(log k). For sorting the events, instead use Preparata’s sorting scheme [49],
which states that a set of n objects can be sorted with n processors in O(log n)
comparisons per processor. Since each processor makes O(log n) comparisons,
and by Subroutine 2 each comparison takes O(log k) time, the parallel running
time per processor is O(log n log k). Finally, processing the events generates no
critical hyperplanes so this step does not require parallelisation.

Now we combine Properties 1-3 with Megiddo’s result to obtain an opti-
misation algorithm for the smallest, regular, k-sided polygon Pk(r, x, y) that
intersects all median lines.

16

Theorem 2. Given a set V of n points in the plane, there is an O(n log7 n ·
log4 k) time algorithm to compute the minimum r such that Dk,V (r, x, y) is true
for some regular, k-sided polygon Pk(r, x, y).

Proof. Megiddo’s multidimensional parametric search implies that there is an
efficient optimisation algorithm. It only remains to compute the running time
of the technique.

The parallel algorithm runs on P = O(n) processors in Tp = O(log n · log k)
parallel steps, whereas the decision algorithm runs in Ts = O(n log n · log k)
time. The dimension d of the parameter space is three. The running time of
multidimensional parametric search is O(TpP +Ts(Tp logP)d) [2]. Substituting
our values into the above formula yields the required bound.

2.3 Computing Critical Hyperplanes

The only requirement left to check is Property 2 for the comparisons in the
comparison-based subroutines, that is, Subroutine 1 and Subroutine 2. Before
launching into the analysis of the two subroutines, we first prove a tool. We will
use the tool repeatedly in the next two sections to simplify checking Property 2.

Lemma 4. Let gradient g ∈ R, point p ∈ R2 and vector v ∈ R2 be given, and
let (r, x, y) ∈ R3 be a variable parameter. Let Lg,v(r, x, y) be the line of gradi-
ent g through the point (x, y)+r ·v. Then there exists a hyperplane Hp,g,v of R3

such that p is above, on, or below Lg,v(r, x, y) if and only if the point (r, x, y) is
above, on, or below Hp,g,v.

p

Lg,v(r, x, y)

⇐⇒
(r, x, y)

Hp,g,v

Figure 2.6: Point p is above Lg,v(r, x, y) if and only if parameter (r, x, y) is
above Hp,g,v.

Proof. Let point p = (px, py) and vector v = (vx, vy). Now, (px, py) is above
the line through (qx, qy) of gradient g if and only if (py − qy)− g · (px− qx) > 0.
Substituting the point (qx, qy) = (x, y) + r · (vx, vy), we get the inequality

(py − y − rvy)− g · (px − x− rvx) > 0.

This inequality can be rearranged into the form ax+ by + cr + d > 0, where

a = g, b = −1, c = (gvx − vy), d = py − gpx.

17

In this form, we can see that the inequality is satisfied if and only if (r, x, y) lies
above the hyperplane Hp,g,v := (ax+ by + cr+ d = 0), where a, b, c, d are given
above. Hence, checking if p is above line Lg,v(r, x, y) is equivalent to checking
if (r, x, y) is above Hp,g,v, as required.

Many of the comparisons in Sections 2.4 and 2.5 will be of the form as stated
in the lemma above. For these comparisons, we say that Hp,g,v is its associated
critical hyperplane. Now we are ready to address the subroutines.

2.4 Subroutine 1

Subroutine 1 decides whether a given point p is outside the k-sided, regular
polygon Pk(r, x, y). We present an O(log k) time comparison-based algorithm
and show that Property 2 holds.

Lemma 5. Subroutine 1 has an O(log k) time comparison-based algorithm, and
comparisons in the algorithm that depend on the parameter (r, x, y) each have
an associated critical hyperplane.

Proof. We partition the polygon Pk(r, x, y) into k triangles, and decide which
partition the point p is in, if it indeed is in any of these partitions. For 1 ≤
i ≤ k, the ith partition of Pk(r, x, y) is the triangle joining the ith vertex,
the (i + 1)th vertex and the center of Pk(r, x, y). Figure 2.7 shows the ith

partition of Pk(r, x, y).

Pk(r, x, y)

i

i+ 1

Figure 2.7: The ith partition of Pk(r, x, y).

Assume for now that the point p is indeed in the polygon Pk(r, x, y) and hence
in one of the k partitions. We decide whether p is in the ith partition for some
i ≤ j, or for some i > j, and perform a binary search for the index i. This can be
done by deciding if the point p is above, on, or below the line joining the center
of Pk(r, x, y) and its jth vertex. The comparison depends on (r, x, y), so we
must compute its associated critical hyperplane using Lemma 4. Let Pk(1, 0, 0)
be the k-sided polygon of radius 1 and centered at the origin. Then set g to be
the gradient of the line joining the center to the ith vertex of Pk(1, 0, 0), and
vector v = 0 in Lemma 4 to obtain the associated critical hyperplane.

18

We have searched for the partition that p is in if it is indeed in Pk(r, x, y).
Hence, it only remains to decide whether p is indeed in that partition. This
requires a constant number of comparisons, each of which depend on (r, x, y).
We have already computed associated critical hyperplanes for two of the sides.
The last side joins two adjacent vertices of the polygon Pk(r, x, y). Set g to be
the gradient of the ith side of polygon Pk(1, 0, 0), and the vector v to be the ith

vertex of Pk(1, 0, 0), to obtain the final associated critical hyperplane.
The running time is dominated by the binary search for the ith partition,

which takes O(log k) time.

2.5 Subroutine 2

Subroutine 2 computes the relative clockwise order of four tangent lines drawn
from two points to polygon Pk(r, x, y).

Lemma 6. Subroutine 2 has an O(log k)-time comparison-based algorithm, and
comparisons in the algorithm that depend on the parameter (r, x, y) each have
an associated critical hyperplane.

Proof. Draw two lines ti, tj tangent to Pk(r, x, y) and parallel to pq, and let
the points of tangency be vertex i and vertex j. If there are multiple points of
tangency then choose any such point. Then without loss of generality, set ij to
be horizontal, and assume further that p has a larger y coordinate than q. Then
the ti, tj and ij partition the plane into the four regions, as shown in Figure 2.8.
Region L is left of both tangents, R is right of both tangents, U is between the
tangents and above ij, and D is between the tangents and below ij.

Pk(r, x, y)

U

D

L R

titj

ij

p

q

Figure 2.8: The lines ti, tj , ij partition the plane into regions L,R,U,D.

Then the relative clockwise order of the four lines drawn from p and q are
determined by which of the four regions L, R, U or D the points p and q are
located. See Figure 2.9.

Five cases follows. Let pe and px points of tangency from p such that the
points pe, p, px are in clockwise order. If p, q are in the same region, then
the containing region L, R, U , and D correspond to the relative clockwise

19

Pk(r, x, y)

p

q

qx

pe

px

qe

Pk(r, x, y)

p

q

pe

px

qe

qx

Pk(r, x, y)

p

q

px

pe qx
qe

Pk(r, x, y)

p

q

pe px

qx qe

Figure 2.9: The relative orders shown for when (i) p, q ∈ L, (ii) p, q ∈
R, ((iii) p, q ∈ U and (iv) p ∈ U, q ∈ D.

orders qepeqxpx, peqepxqx, peqeqxpx, and qepepxqx respectively. If p, q are in
different regions, then they must be in U and D respectively, and the relative
order is pepxqeqx. The proof for case analysis for the five cases is omitted, but
the diagrams in Figure 2.9 may be useful for the reader.

The running time of the algorithm is as follows. Given the gradient of pq,
there is an O(log k) time algorithm to binary search the gradients of the sides
of Pk(r, x, y) to compute the vertices i and j. Then the remainder of the algo-
rithm takes constant time: rotating the diagram so that ij is horizontal, deciding
whether p or q has a larger y coordinate, and computing the region L,R,U,D
that points p, q are in.

The proof of existence of critical hyperplanes is as follows. Since the gra-
dients of pq and sides of Pk do not depend on (r, x, y), computing i and j
generates no critical hyperplanes. Similarly, rotating the diagram so that ij
is horizontal and then deciding which of p or q have larger y coordinates also
generates no critical hyperplanes. It only remains to decide which of the four
regions L,R,U,D the point p, and respectively q, is in. Set g to the gradient
of pq and vector v to be the ith vertex of Pk(1, 0, 0) in Lemma 4 to decide if p
is to the left of the tangent through i. Do so similarly for j to decide if p is
to the right of the tangent through j. Finally, set g to the gradient of ij and
vector v to be either the ith or jth vertex of Pk(1, 0, 0) to decide if p is above
the chord ij.

Checking that Property 2 holds for the comparison-based subroutines, Sub-
routine 1 and Subroutine 2, completes the proof to Theorem 2. In the final sec-

20

tion we will prove that Theorem 2 implies that we have an efficient algorithm for
computing the yolk in the L1 and L∞ metrics, and an efficient approximation
algorithm for the L2 metric.

2.6 Computing the Yolk in L1, L2, and L∞
It remains to show that our general problem for Pk(r, x, y) implies the results
as claimed in the introduction.

Theorem 3. Given a set V of n points in the plane, there is an O(n log7 n)
time algorithm to compute the yolk of V in the L1 and L∞ metrics.

Proof. Setting k = 4 in Theorem 2 gives an algorithm to compute the small-
est P4(r, x, y) that intersects all median lines of V in O(n log7 n) time. This
rotated square coincides with yolk in the L1 metric, refer to Figure 2.2 and
Definition 1.

Computing the yolk in the L∞ metric requires one extra step. Rotate the
points of V by 45◦ clockwise, compute the smallest P4(r, x, y), and then rotate
the square P4(r, x, y) back 45◦ anticlockwise to obtain the yolk in the L∞ metric.

Theorem 4. Given a set V of n points in the plane and an ε > 0, there is
an O(n log7 n · log4 1

ε) time algorithm to compute a (1+ε)-approximation of the
yolk in the L2 metric.

Proof. Set k = dπ · (1 + 1
ε)e. Theorem 2 gives an algorithm to compute the

smallest Pk(r, x, y) that intersects all median lines of V in the desired running
time. It suffices to show that for this parameter set (r, x, y), the disk centered
at (x, y) with radius r is a (1 + ε)-approximation for the yolk in the L2 metric.

First, note that Pk(r, x, y) intersects all median lines, and B(r, x, y) en-
closes Pk(r, x, y), so the disk must also intersect all median lines of V . Hence, it
remains to show that the radius r of B(r, x, y) satisfies r ≤ (1 + ε) · r2, where r2
is the radius of the true yolk in the L2 metric.

Let the yolk in the L2 metric be the disk B(r2, x2, y2). Consider the reg-
ular, k-sided polygon Pk(r2 · sec π

k , x2, y2), so that by construction, all sides of
this polygon are tangent to B(r2, x2, y2).

Now since B(r2, x2, y2) is the L2 yolk, it intersects all median lines and so
does its enclosing polygon Pk(r2 · sec π

k , x2, y2). By the minimality of Pk(r, x, y),
we get r ≤ sec π

k · r2. But for θ ∈ [0, π3], we have sec θ ≤ 1
1−θ . So,

sec
π

k
≤ 1

1− π
k

≤ 1 + ε,

which implies that r ≤ (1 + ε) · r2, as required.

21

Pk(r2 · sec πk , x2, y2)

r2 · sec πk r

Figure 2.10: The polygon Pk(r2 · sec π
k , x2, y2) is externally tangent to the

disk B(r2, x2, y2).

2.7 Concluding Remarks

Cole’s [13] extension to parametric search states that the running time of the
parametric search may be reduced if certain comparisons are delayed. This is a
direction for further research that could potentially improve the running time
of our algorithms.

An open problem is whether one can compute the yolk in higher dimensions
without precomputing all median hyperplanes. Avoiding the computation of
median hyperplanes yields even greater benefits as less is known about bounds
on the number of median hyperplanes in higher dimensions.

Similarly, our approximation algorithm for the L2 yolk in the plane is optimal
up to polylogarithmic factors, however, it is an open problem as to whether
there is a near-linear time exact algorithm. Our attempts to apply Megiddo’s
parametric search technique to the L2 yolk have been unsuccessful so far.

Finally, there are other solution concepts in computational spatial voting
that currently lack efficient algorithms. The shortcomings of existing algo-
rithms are: for the Shapley-Owen power score there is only an approximate
algorithm [29], for the Finagle point only regular polygons have been consid-
ered [68] and for the ε-core only a membership algorithm exists [64]. Since these
problems have a close connection to either median lines or minimal radius, we
suspect that Megiddo’s parametric search technique may be useful.

22

Chapter 3

Translation Invariant
Fréchet Distance Queries

The Fréchet distance is a popular measure of similarity between curves as it
takes into account the location and ordering of the points along the curves,
and it was introduced by Maurice Fréchet in 1906 [28]. Measuring the simi-
larity between curves is an important problem in many areas of research, in-
cluding computational geometry [5, 9, 21], computational biology [33, 69], data
mining [34, 51, 66], image processing [4, 57] and geographical information sci-
ence [36, 41, 50, 59].

The Fréchet distance is most commonly described as the dog-leash distance;
consider a man standing at the starting point of one trajectory and the dog at
the starting point of another trajectory. A leash is required to connect the dog
and its owner. Both the man and his dog are free to vary their speed, but they
are not allowed to go backward along their trajectory. The cost of a walk is
the maximum leash length required to connect the dog and its owner from the
beginning to the end of their trajectories. The Fréchet distance is the minimum
length of the leash that is needed over all possible walks. More formally, for two
curves A and B each having complexity n, the Fréchet distance between A and
B is defined as:

δF (A,B) = inf
µ

max
a∈A

dist(a, µ(a))

where dist(a, b) denotes the Euclidean distance between point a and b and µ :
A → B is a continuous and non-decreasing function that maps every point in
a ∈ A to a point in µ(a) ∈ B.

Since the early 90’s the problem of computing the Fréchet distance between
two polygonal curves has received considerable attention. In 1992 Alt and Go-
dau [5] were the first to consider the problem and gave an O(n2 log n) time
algorithm for the problem. The only improvement since then is a random-
ized algorithm with running time O(n2(log log n)2) in the word RAM model
by Buchin et al. [12]. In 2014 Bringmann [9] showed that, conditional on the
Strong Exponential Time Hypothesis (SETH), there cannot exist an algorithm

23

with running time O(n2−ε) for any ε > 0. Even for realistic models of input
curves, such as c-packed curves [21], exact distance computation requires n2−o(1)

time under SETH [9]. Only by allowing a (1 + ε)-approximation can one obtain
near-linear running times in n and c on c-packed curves [10, 21].

For some applications, such as protein matching [33] and handwriting recog-
nition [57], it is desirable to match the two curves under translation before
computing the Fréchet distance between them. Formally, we match two polyg-
onal curves A and B under the Fréchet distance by computing the translation
τ so that the Fréchet distance is minimised. This variant is called the Trans-
lation Invariant Fréchet distance, and algorithms to compute it are well stud-
ied [6, 11, 33, 67]. Algorithms for the Translation Invariant Fréchet distance
generally carry higher running times than for the standard Fréchet distance,
moreover, these running times depend on the dimension of the input curves and
whether the input curves are discrete or continuous.

For a discrete sequence of points in two dimensions, Bringmann et al. [11] re-

cently provided an O(n4
2
3) time algorithm to compute the Translation Invariant

Fréchet distance, and showed that the problem has a conditional lower bound of
Ω(n4) under SETH. For continuous polygonal curves in two dimensions, Alt et
al. [6] provided an O(n8 log n) time algorithm, and Wenk [67] extended this to
an O(n11 log n) time algorithm in three dimensions. If we allow for a (1 + ε)-
approximation then there is an O(n2/ε2) time algorithm [6], which matches
conditional lower bound for approximating the standard Fréchet distance [9].

For both the standard Fréchet distance and the Translation Invariant Fréchet
distance, subquadratic and subquartic time algorithms respectively are unlikely
to exist under SETH [9, 11]. However, if at least one of the trajectories can be
preprocessed, then the Fréchet distance can be computed much more efficiently.

Querying the standard Fréchet distance between a given trajectory and a
query trajectory has been studied [16, 18, 21, 31, 32], but due to the difficult na-
ture of the query problem, data structures only exist for answering a restricted
class of queries. There are two results which are most relevant. The first is
De Berg et al.’s [18] data structure, which answers Fréchet distance queries
between a horizontal query segment and a vertex-to-vertex subtrajectory of a
preprocessed trajectory. Their data structure can be constructed in O(n2 log2 n)
time using O(n2 log2 n) space such that queries can be answered in O(log2 n)
time. The second is Driemel and Har-Peled’s [21] data structure, which answers
approximate Fréchet distance queries between a query trajectory of complex-
ity k and a vertex-to-vertex subtrajectory of a preprocessed trajectory. The
data structure can be constructed in O(n log3 n) using O(n log n) space, and
a constant factor approximation to the Fréchet distance can be answered in
O(k2 log n log(k log n)) time. In the special case when k = 1, the approximation
ratio can be improved to (1+ε) with no increase in preprocessing or query time
with respect to n. New ideas are required for exact Fréchet distance queries
on arbitrary query trajectories. Other query versions for the standard Fréchet
distance have also been considered [16, 31, 32].

Querying the Translation Invariant Fréchet distance is less well understood.

24

This is not surprising given the complexity of computing the Translation Invari-
ant Fréchet distance. Nevertheless, in our paper we are able to answer exact
Translation Invariant Fréchet queries in a restricted setting of horizontal query
segments. We hope this will be a step towards answering exact Translation
Invariant Fréchet queries between arbitrary trajectories.

In this paper, we answer exact Translation Invariant Fréchet distance queries
between a subtrajectory (not necessarily vertex-to-vertex) of a preprocessed tra-
jectory and a horizontal query segment. The data structure can be constructed
in O(n2 log2 n) time using O(n2 log2 n) space such that queries can be answered
in O(polylog n) time. We use Megiddo’s parametric search technique [39] on
De Berg et al.’s [18] data structure to optimise the Fréchet distance. We hope
that as standard Fréchet distance queries become more well understood, similar
optimisation methods could lead to improved data structures for the Translation
Invariant Fréchet distance as well.

3.1 Preliminaries

Let p1, . . . , pn be a sequence of n points in the plane. We denote π = (p1, p2 . . . ,
pn) to be the polygonal trajectory defined by this sequence. Let x0 ≤ x1 and
y ∈ R, and define p = (x0, y) and q = (x1, y) so that Q = pq is a horizontal
segment in the plane. Let u and v be two points on the trajectory π, then from
[18], the Fréchet distance between π[u, v] and Q can be computed by using the
formula:

δF (π[u, v], pq) = max{‖up‖, ‖vq‖, δ−→
h

(π[u, v], pq), B(π[u, v], y)}.

The first two terms are simply the distance between the starting points of
the two trajectories, and the ending points of the two trajectories. The third
term is the directed Hausdorff distance between π[u, v] and Q which can be
computed from:

δ−→
h

(π[u, v], Q) = max{ max
pi.x∈(−∞,x0]

‖p− pi‖, max
pi.x∈[x1,∞)

‖q − pi‖,max
i
‖y − pi.y‖},

where each pi in the formula above are vertices of the subtrajectory π[u, v],
and pi.x are their x-coordinates. The formula handles three cases for mapping
every point of π[u, v] to its closest point on Q. The first term describes mapping
points of π[u, v] to the left of p to their closest point p. The second term describes
mapping points of π[u, v] to the right of q analogously. The third term describes
mapping points of π[u, v] that are in the vertical strip between p and q to their
orthogonal projection onto Q. In later sections we refer to these three terms as
δ−→
h

(L), δ−→
h

(R) and δ−→
h

(M) for the left, right, and middle terms of the Hausdorff
distance respectively.

The fourth term in our formula for the Fréchet distance is the maximum
backward pair distance over all backward pairs. A pair of vertices (pi, pj) (with
j > i) is a backward pair if pj lies to the left of pi. The backward pair distance

25

of π[u, v] can be computed from:

B(π[u, v], y) = max
∀pi,pj∈π[u,v]:i≤j,pi.x≥pj .x

B(pi,pj)(y),

where B(pi,pj)(y) is the backward pair distance for a given backward pair (pi, pj)
and is defined as

B(pi,pj)(y) = min
x∈R

max{‖pi − (x, y) ‖, ‖pj − (x, y) ‖}.

The distance terms in the braces compute the distance between a given point
(x, y) and the farthest of pi and pj . Let us call this the backward pair distance
of (x, y). Then the function B(pi,pj)(y) denotes the minimum backward pair
distance of a given backward pair (pi, pj) over all points (x, y) which have the
same y-coordinate. Taking the maximum over all backward pairs gives us the
backward pair distance for π[u, v].

In Figure 3.1, we show for each y-coordinate the point with the minimum
backward pair distance (left), and the magnitude of this minimum distance
(right). We see in the figure that the function B(pi,pj)(y) consists of two linear
functions joined together in the middle with a hyperbolic function.

pi

pj

Figure 3.1: For each y-coordinate, Left: the point with minimum backward pair
distance, Right: the minimum backward pair distance.

We extend the work of De Berg et al. [18] in two ways. First, we provide a
method for answering Fréchet distance queries between π[u, v] andQ when u and
v are not necessarily vertices of π, and second, we optimise the placement of Q
to minimise its Fréchet distance to π[u, v]. We achieve both of these extensions
by carefully applying Megiddo’s parametric search technique [39] to compute
the optimal Fréchet distance.

In order to apply parametric search, we are required to construct a set of
critical values (which we will describe in detail at a later stage) so that an
optimal solution is guaranteed to be contained within this set. Since this set of
critical values is often large, we need to avoid computing the set explicitly, but
instead design a decision algorithm that efficiently searches the set implicitly.
Megiddo’s parametric search [39] states that if:

• the set of critical values has polynomial size, and

26

• the Fréchet distance is convex with respect to the set of critical values,
and

• a comparison-based decision algorithm decides if a given critical value is
equal to, to the left of, or to the right of the optimum,

then there is an efficient algorithm to compute the optimal Fréchet distance in
O(PTp+TpTs logP) time, where P is the number of processors of the (parallel)
algorithm, Tp is the parallel running time and Ts is the serial running time of the
decision algorithm. For our purposes, P = 1 since we run our queries serially,
and Tp = Ts = O(polylog n) for the decision versions of our query algorithms.

3.2 Computing the Fréchet Distance

We preprocess π into a data structure such that for a query specified by:

1. two points u and v on the trajectory π (not necessarily vertices),

2. a horizontal segment Q,

we can quickly compute the exact Fréchet distance between Q and the subtra-
jectory π[u, v].

To achieve such a data structure, we first define the following notation. Let
pu be the first vertex of π along π[u, v] and let pv be the last vertex of π along
π[u, v], as illustrated in Figure 3.2.

p0

pn

p q

u
v

p′ q′

pu

pv

Figure 3.2: The points p′ and q′ mapped to the vertices pu and pv of the
trajectory.

If pu and pv do not exist then π[u, v] is a single segment so the Fréchet
distance between π[u, v] and Q can be computed in constant time. Otherwise,
our goal is to build a Fréchet mapping µ : π[u, v]→ Q which attains the optimal
Fréchet distance. We build this mapping µ in several steps. Our first step is to
compute points p′ and q′ on the horizontal segment pq so that p′ = µ(pu) and
q′ = µ(pv).

27

If the point p′ is computed correctly, then the mapping p′ → pu allows us to
subdivide the Fréchet computation into two parts without affecting the overall
value of the Fréchet distance. In other words, we obtain the following formula:

δF (π[u, v], pq) = max{δF (upu, pp
′), δF (π[pu, v], p′q)} (3.1)

We now apply the same argument to pv. We compute q′ optimally on the
horizontal segment p′q optimally so that mapping pv → q′ does not increase the
Fréchet distance between the subtrajectory π[pu, v] and the truncated segment
p′q. In other words, we have:

δF (π[u, v], pq) = max{δF (upu, pp
′), δF (π[pu, pv], p

′q′), δF (pvv, q
′q)} (3.2)

Now that pu and pv are vertices of π, [18] provides an efficient data structure
for computing the middle term δF (π[pu, pv], p

′q′). The first and last terms have
constant complexity and can be handled in constant time. All that remains is
to compute the points p′ and q′ efficiently.

Theorem 1. Given a trajectory π with n vertices in the plane. There is a data
structure that uses O(n2 log2 n) space and preprocessing time, such that for any
two points u and v on π (not necessarily vertices of π) and any horizontal query
segment Q in the plane, one can determine the exact Fréchet distance between
Q and the subtrajectory from u to v in O(log8 n) time.

Proof. Decision Algorithm. Let S be the set of critical values (defined later
in this proof), let s be the current candidate for the point p′, and let F (s) =
max(δF (ps, upu), δF (sq, π[pu, v])) be the minimum Fréchet distance between pq
and π[u, v] subject to pu being mapped to s. Our aim is to design a decision
algorithm that runs in O(log4 n) time that decides whether the optimal p′ is
equal to s, to the left of s or to the right of s. This is equivalent to proving that
all points to one side of s cannot be the optimal p′ and may be discarded.

We use the Fréchet distance formula from Section 3.1 to rewrite F (s) =
max(‖up‖, ‖vq‖, ‖pus‖, δ−→h (π[pu, v], sq), B(π[pu, v], y)). Then we take several
cases for which of these five terms attains the maximum value F (s), and in each
case we either deduce that p′ = s or all critical values to one side of s may be
discarded.

• If F (s) = max(‖up‖, ‖vq‖, B(π[pu, v], y)), then p′ = s. We observe that
none of the three terms on the right hand side of the equation depend on
the position of s. Hence, F (s) = max(‖up‖, ‖vq‖, B(π[pu, v], y)) ≤ F (p′),
and since F (p′) is the minimum possible value, F (s) = F (p′). We have
found a valid candidate for p′ and can discard all other candidates in the
set S.

• If F (s) = ‖pus‖ and pu is to the right (left) of s, then p′ is to the right
(left) of s. We will argue this for when pu is to the right of s, but an
analogous argument can be used when pu is to the left. We observe that
all points t to the left of s will now have ‖put‖ > ‖pus‖. Hence, F (s) =
‖pus‖ < ‖put‖ ≤ F (t) for all points t to the left of s, therefore all points
to the left of s may be discarded.

28

• If F (s) = δ−→
h

(π[pu, v], sq), then p′ is to the left of s. The directed Hausdorff
distance maps every point in π[pu, v] to their closest point on sq, so by
shortening sq to tq for some point t on sq to the right of s, the directed
Hausdorff distance cannot decrease. Hence, F (s) ≤ F (t) for all t to the
right of s, so all points to the right of s may be discarded.

To determine q′ for a fixed candidate s for p′, we treat the problem in a
similar way. We consider the subtrajectory π[pu, v] and the horizontal line seg-
ment sq. Defining a function G(t) representing the Fréchet distance when pv is
mapped to t, we obtain a similar decision algorithm. The most notable differ-
ence is that since we now consider the end of the subtrajectory, the decisions
for moving t left and right are reversed.

Convexity. We will prove that F (s) is convex, and it will follow similarly
that G(t) is convex. It suffices to show that F (s) is the maximum of convex
functions, since the maximum of convex functions is itself convex. The three
terms ‖up‖, ‖vq‖, B(π[pu, v], y) are constant. The term ‖pus‖ is an upward
hyperbola and is convex. If suffices to show that δ−→

h
(π[pu, v], sq) is convex.

We observe that the Hausdorff distance δ−→
h

(π[pu, v], sq) must be attained at
a vertex pi of π[pu, v], and that each of δ−→

h
(pi, sq) as a function of s is a constant

function between p and p∗i , and a hyperbolic function between p∗i and q. Thus,
the function for each pi is convex, so the overall Hausdorff distance function is
also convex.

Critical Values. A critical value is a value c which could feasibly attain the
minimum value F (c) = F (p′). We represent F (s) as the minimum of n simple
functions and then argue that the minimum of F can only occur at the minimum
of one of these functions, or at the intersection of a pair of these functions.

First, ‖up‖, ‖vq‖, B(π[pu, v], y) are constant functions in terms of s. Next,
‖pus‖ is a hyperbolic function. Finally, δ−→

h
(π[pu, v], sq) is not itself simple, but

it can be rewritten as the combination of n simple functions as described in the
above section.

Hence, F (s) is the combination (maximum) of n simple functions, and these
functions are simple in that they are piecewise constant or hyperbolic. Hence
F (s) attains its minimum either at the minimum of one of these n functions, or
at a point where two of these functions intersect. Therefore, there are at most
O(n2) critical values for F (s).

Query Complexity. Computing q′ for a given candidate s for p′ takes
O(log4 n) time: We can compute the terms ‖up‖, ‖pus‖, ‖vq‖, and ‖pvq′‖ in
constant time. The terms B(π[pu, pv], y) and δ−→

h
(π[pu, pv], sq

′) can be computed

in O(log2 n) time using the existing data structure by De Berg et al. [18]. We
need to determine the time complexity of the sequential algorithm Ts, parallel
algorithm Tp, and the number of the processor P . To find q′, the decision
algorithm takes Ts = O(log2 n). The parallel form runs on one processor in
Tp = O(log2 n). Substituting these values in the running time of the parametric
search of O(PTp + TpTs logP) leads to O(log4 n) time.

The above analysis implies that p′ itself can be computed in O(log8 n) time:
For a given s, the decision algorithm runs in Ts = O(log4 n) as mentioned

29

above. The parallel form of the decision algorithm runs on one processors in
Tp = O(log4 n). Substituting these values in the running time of the parametric
search of O(PTp + TpTs logP) leads to O(log8 n) time.

Preprocessing and Space. To compute the second term of Formula 3.2,
we use the data structure by De Berg et al. [18]. This data structure uses
O(n2 log2 n) space and preprocessing time and supports O(log2 n) query time.

We note that the set of critical values can be restricted significantly, while
still being guaranteed to contain optimal elements to use as p′ and q′. Specifi-
cally, in Subsection 3.2.1, we show that we can reduce the size of this set from
O(n2) to O(n).

3.2.1 Improving the Number of Critical Values

In this section we improve the number of critical values for p′ and q′. Note that
our parametric search does an implicit search over these critical values, therefore,
only a logarithmic number of critical values are ever explicitly computed. For
this reason, reducing the number of critical values for p′ and q′ does not affect
the running time of the algorithm in Theorem 1.

Recall that our query consists of two points u and v on the trajectory π, as
well as a horizontal segment with endpoints p and q. Recall also that pu and
pv are the first and last vertices of π on the subtrajectory π[u, v]. As we saw in
Theorem 1, computing the Fréchet distance reduces down to computing p′ and
q′ such that there exists a mapping µ(pu) = p′ and µ(pv) = q′. In this case we
say that p′ represents µ(pu). Formally, we have:

Definition 1. A point s represents pu if and only if there exists a non-decreasing
continuous mapping µ : π[u, v] → pq such that µ achieves the Fréchet distance
and µ(pu) = s.

Hence, to improve the number of critical values and get the stated bound, we
need to show for any query points u and v on π and any horizontal segment pq
in the plane, that there are at most O(n) points on pq which could represent pu.
Now we define a collection of points on pq that could feasibly be representatives.

Definition 2. Given any vertex pi on the subtrajectory π[u, v], let p∗i be the
orthogonal projection of vertex pi onto the horizontal segment pq.

Definition 3. Given any two vertices pi and pj on the subtrajectory π[u, v],
let Pij be the perpendicular bisector of pi and pj . Let P ∗ij be the intersection of
the perpendicular bisector Pij with the horizontal segment pq.

We now have all we need in place to define our set S of candidates for p′

and q′.

Definition 4. Let S be the set containing the following elements:

1. the points p and q,

30

2. all orthogonal projection points p∗i , and

3. all perpendicular bisector intersection points P ∗ij .

It now suffices to show that S contains at least one representative for pu.
An analogous argument shows that S contains a representative of pv as well.

Lemma 1. There exists an element s ∈ S on pq that represents pu.

Proof. Assume for the sake of contradiction that there is no element s ∈ S which
represents pu. Consider a mapping µ that achieves the Fréchet distance and
consider the point µ(pu) on the horizontal segment pq. Since µ(pu) represents
pu, µ(pu) cannot be in S and must lie strictly between two consecutive elements
of S, say sL to its left and sR to its right (see Figure 3.3). Note that it may be
the case that sL = p or sR = q. Since sL and sR are elements of S, neither can
represent pu. Next, we reason about the implications of sL and sR not being
able to represent pu, before putting these together to obtain a contradiction.

pu u

p

pi

sL µ(pu) sR q

T

Figure 3.3: The point µ(pu) lies between two consecutive elements sL and sR.
Distances that are greater than d are thin solid and distances that are at most
d are dotted, where d is the Fréchet distance.

sL cannot represent pu. This means that no mapping which sends pu →
sL achieves the Fréchet distance. Let us take the mapping µ and modify it into
a new mapping µL in such a way that µL(pu) = sL. We can do so by starting
out parametrising µL with a constant speed mapping which sends u → p and
pu → sL. Next, we stay fixed at pu along the subtrajectory and move along
the horizontal segment from sL to µ(pu). The red shaded region in Figure 3.3
describes this portion of the remapping. Now that µL(pu) = µ(pu), we can use
the original mapping for the rest.

Since our new mapping µL maps pu to an element of S that cannot represent
it, we know that our modification must increase the Fréchet distance. The only
place where the Fréchet distance could have increased is at the line segments
where the mapping was changed and here µL(pu) = sL maximises the Fréchet
distance. Hence, we have ‖pusL‖ > d, where d is the Fréchet distance, as shown

31

in Figure 3.3. But ‖puµ(pu)‖ ≤ d, so we can deduce that pu is closer to µ(pu)
than sL. Therefore, pu is to the right of sL. Finally, if sL and sR were on
opposite sides of p∗u, then sL and sR would not be consecutive, therefore pu
must be on the same side of sL and sR. Therefore, pu is to the right of the
entire segment sLsR.

sR cannot represent pu. Again, no mapping which sends pu → sR
achieves the Fréchet distance, so we use the same approach and modify µ into
a new mapping mapping µR in such a way that µR(pu) = sR. To this end, we
keep the mapping µR the same as µ until it reaches pu, and then while staying
at pu, we fastforward the movement from µ(pu) along the horizontal segment
so that µR(pu) = sR. Next, we stay at sR and fastforward the movement along
the subtrajectory, until we reach the first point T on the subtrajectory such
that µ(T) = sR in the original mapping. From point T onwards we can use the
original mapping µ.

Since our new mapping µR maps pu to an element of S that does not rep-
resent it, we cannot have achieved the Fréchet distance. The first change we
applied was staying at pu and fastforwarding the movement from µ(pu) to sR.
However, since we know from above that pu is to the right of the entire segment
sLsR, this fastforwarding moves closer to pu, so this part cannot increase the
Fréchet distance. The second change we applied, staying at sR and fastforward-
ing the movement from pu to T , must therefore be the change that increases
the Fréchet distance. Thus, there must be a point on the subtrajectory π[pu, T]
which has distance greater than d, the Fréchet distance, to the point sR. Since
the distance to a point sR is maximal at vertices of π[pu, T], we can assume
without loss of generality that ‖pisR‖ > d for some vertex pi. Consider µ(pi) in
the original mapping. Since pi is on the subtrajectory π[pu, T], µ(pi) must be
between µ(pu) and µ(T) = sR. This mapping of pi to µ(pi) is shown as a black
dotted line in Figure 3.3. Using a similar logic as before, ‖piµ(pi)‖ ≤ d and
‖pisR‖ > d, so pi must lie to left of sR. And since sL and sR are consecutive
elements of S, we deduce that pi is to the left of the entire segment sLsR.

Putting these together. We now have the full diagram as shown in Fig-
ure 3.3. The vertex pu is to the right of both sL and sR and the vertex pi
is to the left of both sL and sR. We also have inferred that ‖pusL‖ > d and
‖pisR‖ > d. Moreover, since ‖puµ(pu)‖ ≤ d and ‖piµ(pi)‖ ≤ d, we also have
that ‖pusR‖ ≤ d and ‖pisL‖ ≤ d, since this just moves these endpoints closer
to pu and pi respectively.

Finally, we will show that P ∗ui lies between sL and sR, reaching the intended
contradiction. We do so by considering the function f(x) = ‖xpu‖ − ‖xpi‖
for all points x between sL and sR. From our length conditions, we have that
f(sL) > 0, f(sR) < 0. Furthermore, since f(x) is a continuous function, by the
intermediate value theorem, there is a point x strictly between sL and sR such
that f(x) = 0. Since f(x) = 0, the point x is equidistant from pu and pi so
therefore lies on both Pui and the horizontal segment pq. Therefore x = P ∗ui
and is an element of S between two consecutive elements sL and sR, giving us
a contradiction.

32

Note that in the above proof, we require only P ∗ui to be in the candidate
set when we are computing p′, and also only when (pu, pi) is a backward pair.
Recall from Section 3.1 and [17] that (pu, pi) is a backward pair if pi is after pu
along π and pi lies to the left of pu. This means that for computing p′ and q′

respectively, we only require the bisector intersections P ∗ui and P ∗jv to be in S,
of which there are O(n), and therefore the size of S is at most O(n).

3.3 Minimizing the Fréchet Distance Under Ver-
tical Translation

We preprocess π into a data structure such that for a query specified by:

1. two points u and v on the trajectory π,

2. two vertical lines x1 and x2 such that ‖x2 − x1‖ = L,

we can quickly find a horizontal segment ly that spans the vertical strip be-
tween x1 and x2 such that the Fréchet distance between ly and the subtrajectory
π[u, v] is minimised; see Figure 3.4.

p0

pn

u
v

x1 x2

ly

Figure 3.4: Finding a horizontal segment ly in the vertical strip between x1 and
x2 that minimises the Fréchet distance between ly and π[u, v].

In other words, we focus on a special case where the horizontal segment can
only be translated vertically. In Section 3.4 we consider arbitrary translations
of the horizontal segment.

In the next theorem, we present a decision problem Dπ[u,v](x1, x2, l
c
y) that,

for a given trajectory π with two points u and v on π and two vertical lines
x = x1 and x = x2, returns whether the line ly is above, below, or equal to
the current candidate line lcy. We then use parametric search to find ly that
minimises the Fréchet distance.

Theorem 2. Given a trajectory π with n vertices in the plane. There is a
data structure that uses O(n2 log2 n) space and preprocessing time, such that
for any two points u and v on π (not necessarily vertices of π) and two vertical

33

lines x = x1 and x = x2, one can determine the horizontal segment ly with left
endpoint on x = x1 and right endpoint on x = x2 that minimises its Fréchet
distance to the subtrajectory π[u, v] in O(log16 n) time.

Proof. Decision Algorithm. Let lcy be the current horizontal segment. To
decide whether the line segment that minimises the Fréchet distance lies above
or below lcy, we must compute the maximum of the terms that determine the
Fréchet distance: ‖up‖, ‖vq‖, δ−→

h
(π[u, v], pq), and B(π[u, v], lcy). As mentioned

in Section 3.1, we divide the directed Hausdorff distance into three different
terms: δ−→

h
(L), δ−→

h
(R), and δ−→

h
(M). We first consider when one term determines

the Fréchet distance, in which we have the following cases:

• ‖up‖, ‖vq‖, δ−→
h

(L), and δ−→
h

(R): Since the argument for these terms is
analogous, we focus on ‖up‖. If u is located above lcy, the next candidate
lies above lcy (search continues above lcy). If u lies below lcy, the next can-
didate lies below lcy (search continues below lcy). If u and p have the same
y-coordinate, we can stop, since moving lcy either up or down increases the
Fréchet distance.

• B(π[u, v], lcy): If the midpoint of the perpendicular bisector of the back-
ward pair determining the current Fréchet distance is located above lcy,
the next candidate lies above lcy, since this is the only way to decrease
the distance to the further of the two points of the backward pair. If this
midpoint lies below lcy, the next candidate lies below lcy. If the midpoint
is located on lcy, we can stop, because the term B(pi,pj)(l

c
y) increases by

either moving lcy up or down.

• δ−→
h

(M): If the point with maximum projected distance is located above
lcy, the next candidate lies above lcy. If the point is below lcy, the next
candidate lies below lcy. If the point is on lcy, then we stop, but unlike in
the first case, this maximum term and the overall Fréchet distance must
both be zero in this case.

If more than one term determine the current Fréchet distance, we must first
determine the direction of the implied movement for each term. If this direction
is the same, we move in that direction. If the directions are opposite, we can
stop, because moving in either direction would increase the other maximum
term resulting in a larger Fréchet distance.

Convexity. It suffices to show the Fréchet distance between π[u, v] and lcy
as a function of y is convex. We show that this function is the maximum of
several convex functions, and therefore must be convex. The first two terms
for computing the Fréchet distance are ‖up‖ and ‖vq‖, which are hyperbolic in
terms of y. Similarly to the previous section, we handle each of the Hausdorff
distances by splitting them up Hausdorff distances for each vertex pi. The
left and right Hausdorff distances δ−→

h
(L) and δ−→

h
(R) for a single vertex pi is a

hyperbolic function. The middle Hausdorff distance δ−→
h

(M) for a single vertex pi
is a shifted absolute value function. In all cases, Hausdorff distance for a single

34

vertex is convex, so the overall Hausdorff distance is also convex. Finally, the
backward pair distance B(π[u, v], lcy) as a function of y is shown by De Berg et
al. [18] to be two rays joined together in the middle with a hyperbolic arc. It is
easy to verify that this function is convex.

Critical Values. A horizontal segment lcy is a critical value of a decision
algorithm if the decision algorithm could feasibly return that lcy = ly. These
critical values are the y-coordinates of the intersection points of two hyperbolic
functions for each combination of two terms of determining the Fréchet distance
or the minimum point of the upper envelope of two such hyperbolic functions.
Therefore, there are only a constant number of critical values for each two terms.
Each term gives rise to O(n2) hyperbolic functions (specifically, B(π[u, v], lcy)
can be of size Θ(n2) in the worst case). Thus, there are O(n4) critical values.

Query Complexity. The decision algorithm runs in Ts = Tp = O(log8 n)
time since we use Theorem 1 to compute the Fréchet distance for a fixed lcy. Sub-
stituting this in the running time of the parametric search O(PTp +TpTs logP)
leads to a query time of O(log16 n).

Preprocessing and Space. Since we compute the Fréchet distance of
the current candidate lcy using Theorem 1, we require O(n2 log2 n) space and
preprocessing time.

3.4 Minimizing the Fréchet Distance for Arbi-
trary Placement

We preprocess π into a data structure such that for a query specified by:

1. two points u and v on the trajectory π,

2. a positive real value L,

we can quickly determine the horizontal segment l of length L such that the
Fréchet distance between l and the subtrajectory π[u, v] is minimised.

In the following theorem, we present a decision problem Dπ[u,v](L, x1) that,
for a given trajectory π with two points u and v on π and a length L and an
x-coordinate x1, returns whether the line l has its left endpoint to the left, on,
or to the right of x1. We then apply parametric search to this decision algorithm
to find the horizontal segment l of length L with minimum Fréchet distance to
π[u, v].

Theorem 3. Given a trajectory π with n vertices in the plane. There is a
data structure that uses O(n2 log2 n) space and preprocessing time, such that
for any two points u and v on π (not necessarily vertices of π) and a length
L, one can determine the horizontal segment l of length L that minimises the
Fréchet distance to π[u, v] in O(log32 n) time.

Proof. Decision Algorithm. We only need to decide whether lc should be
moved to the left or right, with respect to its current position, for the cases

35

where Dπ[u,v](x1, x2, ly) stops. We classify the terms that determine the Fréchet
distance in two classes:

• C1: This class contains the terms whose value is determined by the dis-
tance from a point on π(u, v) to p or q. Hence, it consists of ‖up‖, ‖vq‖,
δ−→
h

(R), and δ−→
h

(L).

• C2: This class contains the terms whose value is determined by the dis-
tance from a point on π(u, v) to the closest point on pq. Hence, it consists
of δ−→

h
(M) and B(π[u, v], ly).

Next, we show how to decide whether the next candidate line segment lies to
the left or right of lc (i.e., the x-coordinate of its left endpoint lies to the left or
right of the left endpoint of lc) for each case where Dπ[u,v](x1, x2, ly) stops.

We decide this by considering each C1 and C2 term and the restriction
they place on the next candidate line segment pq. After we do this for each
individual C1 or C2 term, we take the intersection of all these restrictions. If
the intersection is empty, then our placement of pq was optimal, and our decision
algorithm stops. Otherwise we can either move pq to the left or to the right to
improve the Fréchet distance.

First, consider the C1 terms. Let us assume for now that the C1 term is
the distance term ‖up‖. Then in order to improve the Fréchet distance to u,
we need to place the horizontal segment pq in such a way that p lies inside the
open disk centered at u with radius equal to the current Fréchet distance d. A
similar condition holds for the other C1 terms: each defines a disk of radius d
and the point it maps to in the next candidate needs to lie inside this disk.

Similarly, the C2 terms define horizontal open half-planes. Consider the
term δ−→

h
(M). This term is reduced when the vertical projection distance to the

line segment is reduced. Hence, if the point defining this term lies above lc, this
term can be reduced by moving the line segment upward and thus the half-plane
is the half-plane above lc. An analogous statement holds if the point lies below
lc. For the term B(π[u, v], ly), we need to consider the midpoint of the bisector,
since the implied Fréchet distance is the distance from lc to the further of the
two points defining the bisector. Thus, the half-plane that improves the Fréchet
distance is the one that lies on the same side of lc as this midpoint.

To combine all the terms we do the following: First, we take all disks in-
duced by the C1 terms whose distance is with respect to q and translate them
horizontally to the left by a distance of L. This ensures that the disks con-
structed with respect to p can now be intersected with the disks constructed
with respect to q. We take the intersection of all C1 and C2 terms that defined
the stopping condition of the vertical optimisation step. If this intersection is
empty, by construction there is no point where we can move p to in order to
reduce the Fréchet distance. If it is not empty, we will show that it lies entirely
to the left or entirely to the right of p and thus implies the direction in which
the next candidate lies.

Now that we have described our general approach, we show which cases can
occur and show that for each of them we can determine in which direction to

36

continue (if any).

d
d

p
q

u

v
d

v′

(a) The midpoint of pq is the mid-
point of uv.

u

vv′

p
q

d
d

d

(b) Moving the midpoint of pq towards the
midpoint of uv.

Figure 3.5: Determining where lc should be moved to reduce the Fréchet dis-
tance.

Case 1. Dπ[u,v](x1, x2, ly) stops because of terms in C1. If only a single term
of C1 is involved, say ‖up‖, this implies that the y-coordinate of u is the same
as that of lc and thus its disk lies entirely to the left of p. Hence, we can reduce
the Fréchet distance by moving lc horizontally towards u and thus we pick our
next candidate in that direction. The same argument follows analogously the
C1 term is ‖vq‖, δ−→

h
(R), or δ−→

h
(L), the same argument follows analogously the

distance is between a point on the trajectory
If two terms of C1 are involved, say ‖up‖ and ‖vq‖, their intersection can

be empty (see Figure 3.5(a)) or non-empty (see Figure 3.5(b)). If it is empty,
the midpoint of pq is the same as the midpoint of uv, which implies that we
cannot reduce the Fréchet distance. If the intersection is not empty, moving
the endpoint of the line segment into this region potentially reduces the Fréchet
distance. We note that since ‖up‖ and ‖vq‖ stopped the vertical optimisation,
they lie on opposite sides of lc. Hence, the intersection of their disks lies entirely
to the left or entirely to the right of p and thus determines in which direction
the next candidate lies.

If three terms in C1 are involved, we again construct the intersection as
described earlier. If this intersection is empty (see Figure 3.6b), we are again
done. If it is not (see Figure 3.6a), it again determines the direction in which
the our next candidate lies, as the intersection of three disks is a subset of the
intersection of two disks.

If there are more than three C1 terms, we reduce this to the case of three
C1 terms. If the intersection of these disks is non-empty, then trivially the
intersection of a subset of three of them is also non-empty. If the intersection is
empty, we select a subset of three whose intersection is also empty. The three
disks can be chosen as follows. Insert the disks in some order and stop when
the intersection first becomes empty. The set of three disks consists of the last

37

p q

u d d

d

pi

pj

d

d

p′i

p′j

(a) The case where we can improve the
Fréchet distance.

p q

u
d

d

d

pi

pj

d

d

p′i

p′j

(b) The case where we cannot improve
the Fréchet distance.

Figure 3.6: The case where we have three C1 terms.

inserted disk and the two extreme disks among the previously inserted disks.
Since the boundary of all the disks must go through a single point and the disks
have equal radius, these three disks will have an empty intersection. Hence, the
case of more than three disks reduces to the case of three disks.

Case 2. Dπ[u,v](x1, x2, ly) stops because of a term in C2. Since the vertical
optimisation stopped, we know that at least two C2 terms are involved and
there exists a pair that lies on opposite sides of lc. These two terms define open
half-planes whose intersection is empty, hence we cannot reduce the Fréchet
distance further.

Case 3. Dπ[u,v](x1, x2, ly) stops because of a term in C1 and a term in C2.
We can assume there are at most two C1 terms and at most one C2 terms, due
to the previous cases.

p q

h

u
d

dR

(a) The case where the C2 term is
δ−→
h

(M).

p q

u
d

dR

pj

pi
d

(b) The case where the C2 term is
max

u≤i≤j≤v,pi.x≥pj .x
B(pi,pj)(lc).

Figure 3.7: Reduce the Fréchet distance when it is determined by a term of C1

and a term of C2.

The C2 term can be either δ−→
h

(M) (see Figure 3.7a, where h is the point at
distance d) or B(π[u, v], ly) (see Figure 3.7b, where (pi, pj) is the backward pair
with distance d). The region R shows the intersection of the disk of a single
C1 term and the C2 term. We note that since the point of the C1 term and

38

the point of the C2 term lie on opposite sides of lc, this intersection lies either
entirely to the left or entirely to the right of p or q, determining the direction
in which our next candidate must lie.

The same procedure can be applied when there are two C1 terms and using
similar arguments, it can be shown that if the intersection is not empty, the
direction to improve the Fréchet distance is uniquely determined.

Convexity. Next, we show that Dπ[u,v](L, x1) is a convex function with re-
spect to the parameter x1. Let lcy be the current horizontal segment and assume
without loss of generality that the decision algorithm moves right to a new seg-
ment ly′ ; see Figure 3.8a. Consider a linear interpolation from lcy to ly′ . Let ly′′

be the segment at the midpoint of this linear interpolation. Since Dπ[u,v](L, x1)
is a continuous function, for continuous functions, convex is the same as mid-
point convex, this implies that we only need to show that Dπ[u,v](L, x1) is mid-
point convex.

Consider the two mappings that minimise the Fréchet distance between
π [u, v] and the horizontal segments lcy and ly′ . Let r be any point on π [u, v] and
let a and c be the points where r is mapped to on ly and ly′ . Construct a point b
on ly′′ where r will be mapped to by linearly interpolating a and c. Performing
this transformation for every point on π[u, v], we obtain a valid mapping for ly′′ ,
though not necessarily one of minimum Fréchet distance.

We bound the distance between r and b in terms of ‖ra‖ and ‖rc‖. Consider
the parallelogram consisting of a, r, b, and a point r′ that is distance ‖ra‖
from c and distance ‖rc‖ from a; see Figure 3.8b. Since b is the midpoint
of ac, it is also the midpoint of rr′ in this parallelogram. We can conclude that
‖rb‖ ≤ (‖ra‖+ ‖rc‖)/2 in this mapping.

Since this property holds for any point r on π[u, v] and the Fréchet distance
is the minimum over all possible mappings, the Fréchet distance of ly′′ is upper
bounded by the average of the Fréchet distances of lcy and ly′ . Therefore, the
decision problem is convex.

u v

lcy

ly′
ly′′

r

a

c
b

(a) Point r is mapped to the three line seg-
ments.

r

a

cb

r′

(b) Upper bounding ‖rb‖.

Figure 3.8: The decision algorithm is a convex function with respect to the left
endpoint of the line segment.

Critical Values. An x-coordinate x1 is a critical value of a decision algo-
rithm if the decision algorithm could feasibly return that the left endpoint of l

39

has x-coordinate x1.
For the C1 class, these critical values are determined by up to three C1 terms:

the vertices themselves, the midpoint of any pair of vertices, and the center of the
circle through the three (translated) points determining the Fréchet distance.
Since each term in C1 consists of at most n points, there are O(n3) critical
values in Case 1.

For the C2 class, these critical values are the x-coordinates of the intersection
points and minima of two hyperbolic functions, one for each element of each pair
of two terms. Therefore, there are only a constant number of critical values for
each two terms. Each term gives rise to at most O(n2) hyperbolic functions
(specifically, B(π[u, v], ly) can be of size Θ(n2) in the worst case). Thus, there
are at most O(n4) critical values in Case 2.

Using similar arguments, it can be shown that there are at most O(n4)
critical values in Case 3, as they consist of at most two C1 terms and at most
one C2 term.

Query Complexity. The decision algorithm runs in Ts = O(log16 n) time
since we use Theorem 2 to compute the optimal placement for a fixed left end-
point. The parallel form of the decision algorithm runs on one processor in
Tp = O(log16 n) time. Substituting these values in the running time of the
parametric search of O(PTp + TpTs logP) leads to O(log32 n) time.

Preprocessing and Space. Since we use the algorithm of Theorem 2 to
the optimal placement of lc for a given x-coordinate of its left endpoint, this
requires O(n2 log2 n) space and preprocessing time.

3.5 Concluding Remarks

In this paper, we answer Translation Invariant Frechet distance queries between
a horizontal query segment and a subtrajectory of a preprocessed trajectory.
The most closely related result is that of De Berg et al. [18], which computes
the normal Fréchet distance between a subtrajectory and a horizontal query seg-
ment. We extend this work in two way. Firstly, we consider all subtrajectories,
not just vertex-to-vertex subtrajectories. Secondly, we compute the optimal
translation for minimising the Fréchet distance, thus our approach allows us to
compute both the normal Fréchet distance and the Translation Invariant Fréchet
distance. All our queries can be answered in polylogarithmic time.

In terms of future work, one avenue would be to improve the query times.
While our approach has polylogarithmic query time, the O(log32 n) time needed
for querying the optimal placement under translation is far from practical. Fur-
thermore, our results use a O(n2 log2 n) size data structure and reducing this
would make the approach more appealing.

Other future work takes the form of generalising our queries further. In our
most general form, we still work with a fixed length line segment with a fixed
orientation. An interesting open problem is to see if we can also determine the
optimal length of the line segment efficiently at query time. Allowing the line
segment to have an arbitrary orientation seems a difficult problem to generalise

40

our approach to, since the data structures we use assume that the line segment
is horizontal. This can be extended to accommodate a constant number of
orientations instead, but to extend this to truly arbitrary orientations, given at
query time, will require significant modifications and novel ideas.

41

Bibliography

[1] Pankaj K. Agarwal and Jivr’i Matouvsek. Ray shooting and parametric
search. SIAM J. Comput., 22(4):794–806, 1993.

[2] Pankaj K. Agarwal and Micha Sharir. Efficient Algorithms for Geometric
Optimization. ACM Comput. Surv., 30(4):412–458, 1998.

[3] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) sorting
network. In Proceedings of the 15th Annual ACM Symposium on Theory
of Computing, 25-27 April, 1983, Boston, Massachusetts, USA, pages 1–9,
1983.

[4] Helmut Alt. The computational geometry of comparing shapes. In Efficient
Algorithms, pages 235–248. Springer, 2009.

[5] Helmut Alt and Michael Godau. Computing the Fréchet distance between
two polygonal curves. International Journal of Computational Geometry
& Applications, 5(2):75–91, 1995.

[6] Helmut Alt, Christian Knauer, and Carola Wenk. Matching polygonal
curves with respect to the Fréchet distance. In STACS 2001, 18th Annual
Symposium on Theoretical Aspects of Computer Science, Dresden, Ger-
many, February 15-17, 2001, Proceedings, pages 63–74, 2001.

[7] Elliot Anshelevich, Onkar Bhardwaj, and John Postl. Approximating op-
timal social choice under metric preferences. In Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, AAAI 2015, pages 777–783, 2015.

[8] Duncan Black. On the rationale of group decision-making. Journal of
Political Economy, 56(1):23–34, 1948.

[9] Karl Bringmann. Why walking the dog takes time: Fréchet distance has
no strongly subquadratic algorithms unless SETH fails. In Proceedings of
the 55th IEEE Annual Symposium on Foundations of Computer Science,
pages 661–670, 2014.

[10] Karl Bringmann and Marvin Künnemann. Improved approximation for
Fréchet distance on c-packed curves matching conditional lower bounds.
International Journal of Computational Geometry & Applications, 27(1-
2):85–120, 2017.

42

[11] Karl Bringmann, Marvin Künnemann, and André Nusse. Fréchet distance
under translation: Conditional hardness and an algorithm via offline dy-
namic grid reachability. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2902–2921, 2019.

[12] Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer.
Four Soviets walk the dog: Improved bounds for computing the Fréchet
distance. Discrete & Computational Geometry, 58(1):180–216, 2017.

[13] Richard Cole. Slowing down sorting networks to obtain faster sorting al-
gorithms. Journal of the ACM, 34(1):200–208, 1987.

[14] Richard Cole, Jeffrey S. Salowe, William L. Steiger, and Endre Sze-
merédi. An optimal-time algorithm for slope selection. SIAM J. Comput.,
18(4):792–810, 1989.

[15] Richard Cole, Micha Sharir, and Chee-Keng Yap. On k-hulls and related
problems. SIAM J. Comput., 16(1):61–77, 1987.

[16] Mark de Berg, Atlas F. Cook, and Joachim Gudmundsson. Fast Fréchet
queries. Computational Geometry, 46(6):747–755, 2013.

[17] Mark de Berg, Joachim Gudmundsson, and Mehran Mehr. Faster algo-
rithms for computing plurality points. In 32nd International Symposium
on Computational Geometry, SoCG 2016, pages 32:1–32:15, 2016.

[18] Mark De Berg, Ali D Mehrabi, and Tim Ophelders. Data structures for
Fréchet queries in trajectory data. In Proceedings of the 29th Canadian
Conference on Computational Geometry, 2017.

[19] Tamal K. Dey. Improved bounds on planar k-sets and k-levels. In 38th An-
nual Symposium on Foundations of Computer Science, FOCS 1997, pages
156–161, 1997.

[20] Anthony Downs. An economic theory of political action in a democracy.
Journal of Political Economy, 65(2):135–150, 1957.

[21] Anne Driemel and Sariel Har-Peled. Jaywalking your dog: computing the
Fréchet distance with shortcuts. SIAM Journal on Computing, 42(5):1830–
1866, 2013.

[22] James M Enelow and Melvin J Hinich. The spatial theory of voting: An
introduction. CUP Archive, 1984.

[23] Chenglin Fan and Benjamin Raichel. Computing the Fréchet gap distance.
In 33rd International Symposium on Computational Geometry, SoCG 2017,
July 4-7, 2017, Brisbane, Australia, pages 42:1–42:16, 2017.

[24] Scott L. Feld and Bernard Grofman. A theorem connecting Shapley-Owen
power scores and the radius of the yolk in two dimensions. Social Choice
and Welfare, 7(1):71–74, 1990.

43

[25] Scott L. Feld, Bernard Grofman, Richard Hartly, Marc Kilgour, and
Nicholas Miller. The uncovered set in spatial voting games. Theory and
Decision, 23(2):129–155, 1987.

[26] Scott L. Feld, Bernard Grofman, and Nicholas Miller. Centripetal forces in
spatial voting: on the size of the yolk. Public Choice, 59(1):37–50, 1988.

[27] Scott L. Feld, Bernard Grofman, and Nicholas R. Miller. Limits on agenda
control in spatial voting games. Mathematical and Computer Modelling,
12(4-5):405–416, 1989.

[28] Maurice Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del
Circolo Matematico di Palermo (1884-1940), 22(1):1–72, 1906.

[29] Joseph Godfrey. Computation of the Shapley-Owen power index in two
dimensions. In 4th Annual workshop, University of Warwick, pages 20–22,
2005.

[30] Ashish Goel, Anilesh Kollagunta Krishnaswamy, and Kamesh Munagala.
Metric distortion of social choice rules: Lower bounds and fairness prop-
erties. In Proceedings of the 2017 ACM Conference on Economics and
Computation, EC 2017, pages 287–304, 2017.

[31] Joachim Gudmundsson, Majid Mirzanezhad, Ali Mohades, and Carola
Wenk. Fast Fréchet distance between curves with long edges. In Proceedings
of the 3rd International Workshop on Interactive and Spatial Computing,
pages 52–58, 2018.

[32] Joachim Gudmundsson and Michiel Smid. Fast algorithms for approximate
Fréchet matching queries in geometric trees. Computational Geometry,
48(6):479–494, 2015.

[33] Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure-structure align-
ment with discrete Fréchet distance. J. Bioinformatics and Computational
Biology, 6(1):51–64, 2008.

[34] Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warp-
ing to massive datasets. In European Conference on Principles of Data
Mining and Knowledge Discovery, pages 1–11, 1999.

[35] David H. Koehler. The size of the yolk: computations for odd and even-
numbered committees. Social Choice and Welfare, 7(3):231–245, 1990.

[36] Patrick Laube. Computational Movement Analysis. Springer Briefs in Com-
puter Science. Springer, 2014.

[37] Richard D. McKelvey. Intransitivities in multidimensional voting models
and some implications for agenda control. Journal of Economic Theory,
12(3):472 – 482, 1976.

44

[38] Richard D. McKelvey. Covering, dominance, and institution-free properties
of social choice. American Journal of Political Science, pages 283–314,
1986.

[39] Nimrod Megiddo. Applying parallel computation algorithms in the design
of serial algorithms. In 22nd Annual Symposium on Foundations of Com-
puter Science (FOCS 1981), pages 399–408. IEEE, 1981.

[40] Nimrod Megiddo. Applying parallel computation algorithms in the design
of serial algorithms. Journal of the ACM, 30(4):852–865, 1983.

[41] Wouter Meulemans. Similarity measures and algorithms for cartographic
schematization. PhD thesis, Technische Universiteit Eindhoven, 2014.

[42] Nicholas R. Miller. A new solution set for tournaments and majority voting:
Further graph-theoretical approaches to the theory of voting. American
Journal of Political Science, pages 68–96, 1980.

[43] Nicholas R. Miller, Bernard Grofman, and Scott L. Feld. The geometry of
majority rule. Journal of Theoretical Politics, 1(4):379–406, 1989.

[44] Peter C. Ordeshook. The spatial analysis of elections and committees: Four
decades of research. Technical report, California Institute of Technology,
Division of the Humanities and Social Sciences, 1993.

[45] Charles R. Plott. A notion of equilibrium and its possibility under majority
rule. The American Economic Review, pages 787–806, 1967.

[46] Keith T. Poole and Howard Rosenthal. The polarization of American pol-
itics. The Journal of Politics, 46(4):1061–1079, 1984.

[47] Keith T. Poole and Howard Rosenthal. Patterns of congressional voting.
American Journal of Political Science, pages 228–278, 1991.

[48] Keith T. Poole and Howard Rosenthal. D-nominate after 10 years: A
comparative update to congress: A political-economic history of roll-call
voting. Legislative Studies Quarterly, pages 5–29, 2001.

[49] Franco P. Preparata. New parallel-sorting schemes. IEEE Trans. Comput-
ers, 27(7):669–673, 1978.

[50] Peter Ranacher and Katerina Tzavella. How to compare movement? A
review of physical movement similarity measures in geographic informa-
tion science and beyond. Cartography and Geographic Information Science,
41(3):286––307, 2014.

[51] Chotirat Ann Ratanamahatana and Eamonn Keogh. Three myths about
dynamic time warping data mining. In Proceedings of the 2005 SIAM
International Conference on Data Mining, pages 506–510, 2005.

45

[52] Norman Schofield. Equilibrium in the spatial ‘valence’ model of politics.
Journal of Theoretical Politics, 16(4):447–481, 2004.

[53] Norman Schofield. The spatial model of politics. Routledge, 2007.

[54] Norman Schofield, Gary Miller, and Andrew Martin. Critical elections and
political realignments in the USA: 1860–2000. Political Studies, 51(2):217–
240, 2003.

[55] Micha Sharir. A near-linear algorithm for the planar 2-center problem.
Discrete & Computational Geometry, 18(2):125–134, 1997.

[56] Piotr Krzysztof Skowron and Edith Elkind. Social choice under metric
preferences: Scoring rules and STV. In Thirty-First AAAI Conference on
Artificial Intelligence, AAAI 2017, pages 706–712, 2017.

[57] E. Sriraghavendra, K. Karthik, and Chiranjib Bhattacharyya. Fréchet dis-
tance based approach for searching online handwritten documents. In Pro-
ceedings of the 9th International Conference on Document Analysis and
Recognition, volume 1, pages 461–465, 2007.

[58] Richard E. Stone and Craig A. Tovey. Limiting median lines do not suffice
to determine the yolk. Social Choice and Welfare, 9(1):33–35, 1992.

[59] Kevin Toohey and Matt Duckham. Trajectory similarity measures.
SIGSPATIAL Special, 7(1):43–50, 2015.

[60] Géza Tóth. Point sets with many k -sets. In 16th Annual Symposium on
Computational Geometry, SoCG 2000, pages 37–42, 2000.

[61] Craig A. Tovey. A polynomial-time algorithm for computing the yolk in
fixed dimension. Mathematical Programming, 57(1):259–277, 1992.

[62] Craig A. Tovey. Some foundations for empirical study in the Euclidean spa-
tial model of social choice. In Political economy: institutions, competition,
and representation: Proceedings of the Seventh International Symposium in
Economic Theory and Econometrics, page 175. Cambridge Univ Pr, 1993.

[63] Craig A. Tovey. The almost surely shrinking yolk. Mathematical Social
Sciences, 59(1):74–87, 2010.

[64] Craig A. Tovey. A finite exact algorithm for epsilon-core membership in
two dimensions. Mathematical Social Sciences, 60(3):178–180, 2010.

[65] Craig A. Tovey. The Finagle point and the epsilon-core: a comment on
Bräuninger’s proof. Journal of Theoretical Politics, 23(1):135–139, 2011.

[66] Haozhou Wang, Han Su, Kai Zheng, Shazia Sadiq, and Xiaofang Zhou. An
effectiveness study on trajectory similarity measures. In Proceedings of the
24th Australasian Database Conference, pages 13–22, 2013.

46

[67] Carola Wenk. Shape matching in higher dimensions. PhD thesis, Free
University of Berlin, Dahlem, Germany, 2003.

[68] A. Wuffle, Scott L. Feld, Guillermo Owen, and Bernard Grofman. Fina-
gle’s law and the finagle point, a new solution concept for two-candidate
competition in spatial voting games without a core. American Journal of
Political Science, pages 348–375, 1989.

[69] Tim Wylie and Binhai Zhu. Protein chain pair simplification under the
discrete Fréchet distance. IEEE/ACM Trans. Comput. Biology Bioinform.,
10(6):1372–1383, 2013.

47

	Introduction
	Computing the Yolk in Spatial Voting Games
	Decision Algorithm
	Parametric Search
	Preliminaries
	Applying the technique

	Computing Critical Hyperplanes
	Subroutine 1
	Subroutine 2
	Computing the Yolk in L1, L2, and L infty
	Concluding Remarks

	Translation Invariant Fréchet Distance Queries
	Preliminaries
	Computing the Fréchet Distance
	Improving the Number of Critical Values

	Minimizing the Fréchet Distance Under Vertical Translation
	Minimizing the Fréchet Distance for Arbitrary Placement
	Concluding Remarks

