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Introduction

The Epstein-Penner decomposition is an elegant yet powerful construc-
tion in the study of non-compact finite volume hyperbolic manifolds. The
Epstein-Penner construction first arose in the study of Teichmüller space
and its cell decomposition, building on earlier work by Harer [Har86] and
by Bowditch and Epstein [BE88]. In [Pen87], Penner uses the Epstein-
Penner construction to assign an ideal cell decomposition to each point of
Teichmüller space, which remarkably induces a cell decomposition of Te-
ichmüller space, the proof of which is extremely difficult.

The Epstein-Penner construction has since found many uses in the study
of compact orientable surfaces [Ush99], hyperbolic 3-manifolds [Yos01]
[HRS12] and 4-manifolds [KM13] to name a few examples.

An efficient algorithm to compute the Epstein-Penner decomposition of
a non-compact hyperbolic manifold was first given by Weeks in [Wee93].
Weeks’ algorithm plays an extremely important role in the systematic study
of hyperbolic 3-manifolds [CHW99], and is included in the popular soft-
ware packages SnapPea and Regina. Although Weeks’ algorithm is not a
true algorithm and only a heuristic procedure for dimensions 3 and greater,
it is very reliable in practice.

In the recent paper by Cooper-Long [CL13], the Epstein-Penner con-
struction was generalised to non-compact, finite volume, strictly convex
projective manifolds, building on earlier work by Cooper, Long and Till-
man [CLT11]. This raises the following open problems: Is there an effi-
cient algorithm to compute the Epstein-Penner decomposition in this case?
Do these cell decompositions induce a cell decomposition of its Teichmüller
space in the case of non-compact strictly convex projective surfaces? Which
results about the Epstein-Penner decomposition generalise to the strictly
convex projective setting?

This paper attempts to answer the first question by proposing a novel
algorithm for the Epstein-Penner decomposition. Unlike its predecessors, it
is not restricted to hyperbolic geometry and is able to compute the Epstein-
Penner decomposition of strictly convex projective surfaces. Also, since
hyperbolic geometry is a subgeometry of projective geometry, the proposed
algorithm is still applicable to cusped hyperbolic manifolds. The algorithm
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2 INTRODUCTION

may be a useful tool for further study of strictly convex projective mani-
folds, for example, to study the second problem.

In Chapter 1, some basic theory of hyperbolic geometry is reviewed
and in Chapter 2 the construction of the Epstein-Penner decomposition is
explained. In Chapters 3 and 4, analogous results are established in the case
of strictly convex projective manifolds, including Cooper-Long’s construc-
tion. Finally, in Chapter 5 the new algorithm is presented with proof of
correctness for strictly convex projective surfaces.



CHAPTER 1

Background - Hyperbolic Geometry

1.1. Hyperboloid Model of Hyperbolic Space

Define Minkowski space to be the real vector space R3 with the qua-
dratic form 〈·, ·〉 defined by

〈x, y〉 = −x1y1 + x2y2 + x3y3.

The form 〈·, ·〉 is called the Minkowski Inner Product.
Vectors with inner product 〈x, x〉 = 0 are called light-like vectors. A

light-like vector is called positive (resp. negative) if x1 > 0 (resp. x1 < 0).
The set of all positive light-like vectors forms the positive light-cone, which
we will denote by L+.

The vectors satisfying 〈x, x〉 = −1 form a two sheeted hyperboloid.
The hyperboloid model of the hyperbolic plane is given by the upper sheet

H = {x ∈M : 〈x, x〉 = −1, x1 ≥ 1},
imbued with the Riemannian metric inherited from the quadratic form 〈·, ·〉.
Points at infinity are represented by rays on the light-cone L+. The isome-
tries of H are the 3 × 3 matrices preserving the quadratic form 〈·, ·〉 and
that do not exchange the two sheets of the hyperboloid. This group of
isometries, which we will call SO+(1, 2), are the matrices A ∈ GL(3,R)
such that detA = 1, the top left entry is positive and AtJA = J where
J = diag(−1, 1, 1) [Rat06].

1.2. Upper Half-plane Model

The upper half-plane model of hyperbolic geometry is the subset H2 =
{x+ iy ∈ C : y > 0} of the complex plane with the metric

ds =

√
dx2 + dy2

y
.

The geodesics of the model are either circular arcs perpendicular to the
real axis or straight vertical lines ending on the real axis.

The special linear group SL(2,R) is the group of 2 × 2 matrices with
determinant 1. Quotienting the special linear group by its centre gives the
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4 1. BACKGROUND - HYPERBOLIC GEOMETRY

projective special linear group

PSL(2,R) = SL(2,R)/{± ( 1 0
0 1 )}.

Elements in PSL(2,R) act on the upper half of the complex plane H2

via linear fractional transformations.(
a b
c d

)
· z =

az + b

cz + d

Note that the matrix is only well defined up to sign, however, the sign of
the matrix does not affect the transformation. Hence, the action is well de-
fined. These maps are the orientation preserving isometries of the upper
half-plane H and are called Möbius Transformations. Futhermore, the com-
position of Möbius transformations is equivalent to matrix multiplication in
PSL(2,R).

1.3. Poincaré Disk Model

The Poincaré Disk, denoted by D, is defined to be the disk {x ∈ R2 :
|x| < 1} with the metric

ds =

√
dx2 + dy2

1− x2 − y2
.

There are two types of geodesics of the Poincaré Disk Model. The
first type is circular arcs whose endpoints are perpendicular to the boundary
∂D = {x ∈ R2 |x| = 1}, and the second type is the diameters of the disk.
The second case may be considered a special case of the first if we allow
circular arcs to have infinite radius.

There is a bijection between the upper half-plane H2 and the Poincaré
Disk D given by the map h : H2 → D,

h(z) =
z − i
iz − 1

.

Moreover, h is an isometry. If A ∈ PSL(2,R) is an orientation preserving
isometry H2 → H2, then hAh−1 is also an orientation preserving isometry
of D. Hence, A ∈ PSL(2,R) acts on the Poincaré disk via the orientation
preserving isometries hAh−1.

Both the Poincaré model and the upper half-plane model are conformal
representations of the hyperbolic plane, meaning that the angles between
lines in the hyperbolic space are same as the Euclidean ones in the model.

The Poincaré model and the hyperboloid model are related projectively.
Take the hyperboloid H defined in section 1.1 and let the Poincaré Disk
be the set {x = (0, x2, x3) : |x| < 1} ⊂ R3. Radial projection from the
projection point (−1, 0, 0) relates the two models, and is in fact an isometry.
Moreover, this projection lifts the action of PSL(2,R) on D to an action on
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H since the projection is an isometry. So PSL(2,R) acts as orientation
preserving isometries on H , in fact, all orientation preserving isometries of
H arise this way. The explicit action of PSL(2,R) on H will be discussed
in section 1.6.

1.4. Klein Model

The Projective or Klein model of the hyperbolic plane is given by the
set

D = {x ∈ R2 : |x| < 1},
together with a hyperbolic metric given by the following formula: Let p
and q be distinct points in D and let the line pq intersect the boundary of the
Klein model ∂D at points a and b so that the points are, in order, a, p, q, b.
Then,

d(p, q) =
1

2
log
|qa||bp|
|pa||qb| ,

where | · | denotes the Euclidean distance. Geodesics in the Klein model are
the Euclidean ones.

An isometry between the Poincaré Disk and the Klein model is given by
k : D→ D, u 7→ 2u

1+|u|2 . Under this transformation, points on the boundary
are fixed, and a curved geodesic with endpoints a, b ∈ ∂D is mapped to a
straight geodesic with the same endpoints a, b ∈ D.

The isometry between D and H is given by radial projection, this time
D is the set {x = (1, x2, x3) : x2

2 + x2
3 < 1} ∈ R3 and the centre of pro-

jection is the origin. This projection of the Klein model to the hyperboloid
model is an important step in the Epstein-Penner Construction, which will
be discussed in Chapter 2.

The orientation preserving isometries of the Klein model D are the ori-
entation preserving isometres of D conjugated by the isometry k, hence
we can identify the orientation preserving isometries of D with the group
elements in PSL(2,R). The isometries of the Klein model are also the ori-
entation preserving isometries of H conjugated by the projection ρ, and can
be identified with the elements of SO+(1, 2).

1.5. Horocycles

In the upper half-plane model, horocycles are either a circle tangent to
real axis or a horizontal line la = {x + ia : x ∈ R}, a > 0. A horocycle
tangent to the real axis at x ∈ R is said to be centred at x, whereas the
horizontal horoballs are all centred at∞. The metric on the horocycle la is
the Euclidean distance with a scaling factor of 1

a
.

In the Poincaré disk model, horocycles are circles tangent to the bound-
ary.
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In the hyperboloid model, a horocycle is the intersection of H with a
plane in R3 whose normal vector is light-like. The horocycle hw may be
naturally associated with this light like vector w ∈ L+ by the Minkowski
inner product: hw = {x ∈ H : 〈w, x〉 = −1}. Hence, the closer the
horocycle hw is to infinity, the closer its light-like representative w is to the
origin.

Lemma 1.1. The horocycle la in the upper half-plane model corresponds
to a horocycle in the Poincaré Disk model with radius 1

1+a
.

Proof. The isometry between the upper half-plane model and the Poincaré
disk is given by

h(z) =
z − i
iz − 1

,

so the centre of horocycle la is sent to h(∞) = −i. Then h(la) is a circle
which lies inside the disk |z| ≤ 1 and tangent to it at −i. The point dia-
metrically opposite to h(∞) in the Poincare model is h(ia) = i(1−a)

1+a
. The

diameter lies on the imaginary axis and has length 2
1+a

, hence the horocycle
la corresponds to a horocycle in D with Euclidean radius 1

1+a
. �

Lemma 1.2. Let hw be a horocycle in the hyperboloid model with associ-
ated light like vector w ∈ L+ having first coordinate, or height, a. Then
hw corresponds to a horocycle in the Poincaré Disk model with Euclidean
radius 1

1+a
.

Proof. Without loss of generality let w = (a, a, 0). Since ray w points
towards the centre of horoball hw, the projection of hw onto the Poincare
model will be a horoball centred at (0, 1, 0). The point diametrically oppo-
site will be of the form (0, k, 0), and projecting this point onto the hyper-
boloid model gives a point of the form (x, y, 0) (see Figure 1.5.1).

The point (x, y, 0) must be on the hyperboloid and the horoball hw,
therefore −x2 + y2 = −1 and −ax + ay = −1. Solving the equations
simultaneously gives x = 1

2
(a + 1

a
) and y = 1

2
(a − 1

a
), and projecting the

point back onto the Poincaré disk gives the point (0, 2a
a+1
− 1, 0) diametri-

cally opposite ot (0, 1, 0) on the horoball. Hence, the Euclidean radius of
the horoball in the Poincaré model is 1

2
(2− 2a

a+1
) = 1

1+a
. �

1.6. Isometries of hyperbolic space

LetA ∈ PSL(2,R) be a Möbius Transformation. IfA is not the identity
transformation, then by considering its Jordan Normal form, A is conjugate
to±

(
cos θ − sin θ
sin θ cos θ

)
,±
(
a 0
0 1/a

)
, or± ( 1 1

0 1 ), and is called elliptic, hyperbolic or
parabolic respectively. Elliptic transformations have | tr(A)| < 2 and fixes
exactly one point in H2. Hyperbolic transformations have | tr(A)| > 2 and
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x

y

w = (a,a,0)

(x,y,0)

(0,k,0)

(-1,0,0)

-ax + ay = -1

FIGURE 1.5.1. The projection of a horosphere with light-
like representative w = (a, a, 0) onto the Poincaré Disk.

fix two points on the boundary R ∪ {∞}. Parabolic transformations have
| tr(A)| = 2 and fixes exactly one point on the boundary R ∪ {∞}.

The group of orientation preserving isometries of hyperbolic space is
PSL(2,R), however, the orientation preserving isometries of H are also
given by linear transformations preserving the bilinear form 〈·, ·〉 in sec-
tion 1.1. Indeed, the action of group elements of PSL(2,R) on H is given
in [Pen87] as follows.

We represent a point x = (x1, x2, x3) ∈ R3 by the matrix
(
x1+x3 x2
x2 x1−x3

)
.

This identifies H with the set of symmetric matrices with determinant x2
1−

x2
2 − x2

3 = 1 [todo]. The action of A ∈ PSL(2,R) on this matrix is given
by (

x1 + x3 x2

x2 x1 − x3

)
7→ At

(
x1 + x3 x2

x2 x1 − x3

)
A.

The action of A = ( a bc d ) on R3 is calculated from the above expression.


x1

x2

x3


 7→




1
2
(a2 + b2 + c2 + d2) ac+ bd 1

2
(a2 + b2 − c2 − d2)

ab+ cd bc+ ad ab− cd
1
2
(a2 − b2 + c2 − d2) ac− bd 1

2
(a2 − b2 − c2 + d2)





x1

x2

x3




Let Ã be the 3 × 3 matrix shown above. Then Ã ∈ SO+(1, 2) since
det Ã = 1, the top left entry of Ã is positive and ÃtJÃ = J , where J =
diag(−1, 1, 1). Furthermore, the map α : PSL(2,R) → SO+(1, 2), A 7→
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Ã is a group isomorphism. The map sends ± ( 1 1
0 1 ) to

(
1 1 0
0 1 1
0 0 1

)
. and hence

sends parabolic elements of PSL(2,R) to parabolic elements of SO+(1, 2)

conjugate to the standard parabolic
(

1 1 0
0 1 1
0 0 1

)
. In particular, the parabolics in

SO+(1, 2) form a single conjugacy class.

1.7. Hyperbolic surfaces

The Möbius Transformations PSL(2,R) forms a topological group un-
der composition and the compact-open topology. The compact-open topol-
ogy of a group of isometries Γ on a topological space X is generated by the
subsets of the form BK,U = {A ∈ Γ : A(K) ⊂ U} for all K ⊂ X compact
and U ⊂ X open. The sets BK,U do not form a topological basis, but rather
a sub-basis for the topology, so open sets in the compact-open topology are
an arbitrary union of finite intersections of the sets BK,U . A topological
group Γ is called discrete if all points are open, and we say Γ acts properly
discontinuously on X if for each compact subset K ⊂ X , the set K ∩gK is
non-empty for only finitely many g ∈ Γ. In the case where Γ < PSL(2,R)
acts on the hyperbolic plane, Γ is discrete if and only if Γ acts properly
discontinuously. A group Γ acts freely on X if and only if each non-trivial
g ∈ Γ does not fix any points in X . A group Γ < PSL(2,R) acts freely on
D if and only if it is torsion-free [Rat06].

Let Γ be a freely acting, properly discontinuous group of isometries of
the Klein model D. Then the quotient space D/Γ is the set of all Γ-orbits
{Γ · x : x ∈ D} with the quotient metric dΓ(Γ · x,Γ · y) = inf{d(a, b) :
a ∈ Γ · x, b ∈ Γ · y}. The quotient space is locally isometric to D and D is
the universal covering space for D/Γ. The space M = D/Γ is a hyperbolic
surface with fundamental group π1(M) ∼= Γ, moreover, every hyperbolic
surface arises this way [Rat06].

A subset R of a metric space X is a fundamental domain for the group
Γ if R is connected and open, g · R : g ∈ Γ are pairwise disjoint and
X =

⋃
g∈Γ{g · R̄ : g ∈ Γ}, where R̄ is the closure of R in X .

1.8. Thick Thin Decomposition

LetM be a surface andB(r) be a ball of radius r in the Euclidean plane.
For a point x, the largest radius r such that the exponential map from B(r)
to the tangent space Tx(M) is injective is called the injectivity radius of M
at x. We denote the injectivity radius at x with r(x). The injectivity radius
r(x) is also the supremum of radii of embedded metric balls in M centred
at x.

We decompose M into a compact thick part

M≥ε = {x ∈M : r(x) ≥ ε}
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FIGURE 1.8.1. The thick thin decomposition of a surface.

and a thin part
M<ε = {x ∈M : r(x) < ε}.

To understand the thin part of this decomposition, we appeal to the fol-
lowing useful lemma.

Lemma 1.3 (Margulis Lemma). Let Γ be a group of discrete isometries of
hyperbolic n-space. Then the group generated by

{γ ∈ Γ | d(x, γ(x)) ≤ εn ∀x ∈ Hn}
is virtually nilpotent, where εn is a universal constant depending only on
the dimension n.

Remark 1.4. An estimate for the Margulis constant ε2 ≥ arcsinh(1) ≈
0.8813 is given in [Bus10].

Margulis lemma simplifies in the case of hyperbolic surfaces, as the
manifold H2/Γ has Γ torsion free so virtually nilpotent implies abelian.
The abelian, discrete group is infinite cyclic with either a hyperbolic or
parabolic generator. If we choose ε < ε2, each component M<ε is an open
annulus; either a regular neighbourhood of a short geodesic, or isometric
to a subsurface of a surface of revolution, the tractricoid [Thu97]. This is
called the thick-thin decomposition of surface M .

Explicitly, the tractricoid is parametrised by

t 7→ (t− tanh t, sech t), 0 ≤ t <∞
and is endowed with the metric d, defined by the property that d(x, y) is
equal to the infimum of the euclidean lengths of all piecewise differentiable
curves joining x and y on the tractricoid. The metric d gives the tractricoid
a complete hyperbolic structure with constant negative curvature.
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1.9. Peripheral subgroup

If a non-compact surface S is topologically finite, then S = Int(S̄),
where S̄ is compact and the boundary ∂S̄ is nonempty. For each component
c̄i ⊂ ∂S̄ take a neighbourhood c̄i×I ↪→ S̄, called the collar neighbourhood
of ci, such that these neighbourhoods are pairwise disjoint. Denote N(∂S̄)
the union of these neighbourhoods. Then Sc := S̄\N(∂S̄) is compact and
homeomorphic to S̄. This is called the compact core of S.

c1
_

c1

c0

c2

b

γ1

γ0

γ2

c0
_

c2
_

FIGURE 1.9.1. The collar neighbourhoods used to define
the peripheral subgroups of π1(S, b).

Fix a basepoint b of S in Sc and choose a path γi : [0, 1]→ Sc from b to
ci for each boundary component, where γi(0) = b, γi(1) ∈ ci. Then there
are natural homomorphisms φi : π1(ci, γi(1)) → π1(Sc, b) ∼= π1(S, b) by
taking a loop α based at γi(1) in the circle ci to the loop γ−1

i αγi in S based
at b. Then g−1 Im(φi)g is a peripheral subgroup of π1(S, b) for all ci ⊂ ∂Sc

and g ∈ π1(S, b). This is well defined since choosing a different path γi
results in a conjugate subgroup.

1.10. Parabolic fixed points

Consider a hyperbolic surface D/Γ, where Γ is a freely acting, discrete
group of isometries. A point p ∈ ∂D is a parabolic fixed point of Γ if
there is a parabolic transformation A ∈ Γ such that Ap = p. There is a
one-to-one correspondence between the set of parabolic fixed points {p}
and the set of peripheral subgroups of the fundamental group Γ, as each pe-
ripheral subgroup fixes a unique point on the boundary. Equivalently, every
parabolic fixed point of Γ is the fixed point of some peripheral subgroup
of Γ. Consider a cusp of D/Γ with collar neighbourhood ci. Its associated
set of conjugate peripheral subgroups is defined to be g−1 Imφig, where
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Imφi = 〈γ〉 for a parabolic element γ ∈ Γ if ci is in the Margulis region
M<ε. If 〈γ〉 fixes the point p ∈ ∂D, then its conjugate g−1〈γ〉g = 〈g−1γg〉
fixes the point g−1p ∈ ∂D for all g ∈ Γ. Hence, each cusp of D/Γ has an
associated set of conjugate peripheral subgroups with parabolic fixed points
in a Γ-orbit.

For p ∈ ∂D, the stabiliser subgroup of p are elements of Γ which fix it,
i.e.

StabΓ(p) = {A ∈ Γ : A · p = p}.
In the case where p is a parabolic fixed point of Γ, this stabiliser subgroup
coincides with a peripheral subgroup of Γ.

1.11. Ideal cell decompositions

A cell decomposition of a manifold S with boundary ∂S is a decompo-
sition of S as a union of cells (spaces homeomorphic Rn, with any two cells
meeting only along their boundaries).

An ideal polyhedral decomposition is a cell decomposition where every
cell is an ideal polyhedron (polyhedron with its vertices removed). If the
manifold is a non-compact surface and all 2-cells are ideal 2-simplices, the
cell decomposition is called an ideal triangulation of the surface.

The following two lemmas are due to Lackenby [Lac00]:

Lemma 1.5. Let S be a compact surface with non-empy boundary and
χ(S) < 0. Then S \∂S admits an ideal triangulation with −2χ(S) ideal
triangles.

Lemma 1.6. Any two ideal triangulations of a S \∂S as above are related
by a finite sequence of elementary moves. An elementary move consists of
picking two distinct 2-simplices sharing an edge, removing the shared edge
to form a square, and dividing this square along its other diagonal.

1.12. The once punctured torus

The once punctured torus is the surface obtained by removing a point
from the torus. It admits a Euclidean metric if considered as a restriction of
the Euclidean torus, however, this metric is not complete. Although there
is no complete Euclidean metric on the once punctured torus, it does admit
a complete hyperbolic metric. The following construction can be found in
[Bon09].

A cell decomposition of the once punctured torus is obtained by remov-
ing the vertices of a polyhedral decomposition of the torus. Hence, a ideal
polyhedral decomposition of the once punctured torus is an ideal quadrilat-
eral X with its opposite edges glued in an orientation preserving manner.
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FIGURE 1.12.1. The ideal quadrilateral X with opposite
edges glued is an ideal polyhedral decomposition of the once
punctured torus

To give the once punctured torus a complete hyperbolic structure, X is em-
bedded in the hyperbolic plane.

Let X be an ideal quadrilateral in the upper half-plane model H2, with
ideal vertices at −1, 0, 1,∞. The sides of X are the geodesics E1 joining
−1 to∞, E2 joining 0 to 1, E3 joining 1 to∞ and E4 joining 0 to−1. Note
that there is a one-parameter space of Möbius transformations which send
the geodesic E1 to E2. The Möbius transformation

φ1(z) =
z + 1

z + 2

sends the endpoints −1,∞ to 0, 1 respectively, so it sends E1 to E2. Simi-
larly,

φ3(z) =
z − 1

−z + 2
sends E3 to E4.

If φ2 = φ−1
1 and φ4 = φ−1

3 , then the matrix forms of φ4 and φ2 in
PSL(2,R) are

A =

(
2 1
1 1

)
, B =

(
2 −1
−1 1

)
.

The two generator subgroup Γ = 〈A,B〉 of PSL(2,R) is discrete and free
in PSL(2,R), and X is a fundamental domain for the group Γ. The quo-
tient space X̃ = H2/Γ is a hyperbolic surface homeomorphic to the once
punctured torus. The commutator [A,B] is φ4 · φ2 · φ3 · φ1 and sends∞ to
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itself. Moreover,

[A,B] =

(
−1 −6
0 −1

)

so [A,B] is a parabolic element with its parabolic fixed point at ∞. The
peripheral subgroups corresponding to the single cusp of the once punctured
torus are generated by the conjugates of the commutator, i.e. 〈g[A,B]g−1〉,
where g ∈ Γ. The parabolic fixed points of Γ is the orbit Γ · ∞.

SinceX is convex, the quotient space X̃ inherits a quotient metric which
is hyperbolic. The thick thin decomposition of X̃ consists of the compact
thick part, and a thin part with a single component, being the neighbourhood
of the single cusp, which can be described in terms of horoballs. Let la =
{x + iy : y ≥ a} in H2 be a horoball where a ≥ 6/ε2. Then the peripheral
subgroup of Γ fixing∞ is 〈[A,B]〉, and acts discretely on the horoball la.
The subset Y = la/Γ ⊂ H2/Γ is a region in X̃ in the neighbourhood of
its cusp. Moreover, the injectivity radius of Y is the length of the boundary
∂Y ⊂ X . The peripheral element [A,B] corresponds to the fractional linear
transformation z 7→ z+ 6, so the length of the horocycle ∂la in the quotient
space is 6 · 1

a
as the metric on the horocycle is a scalar multiple of the

Euclidean metric. Hence, the length of the boundary ∂Y is 6
a
≤ ε2. The

injectivity radius of any point in Y is less that ε2, in fact, Y is the set of all
such points. This gives the thick thin decomposition M<ε = Y , M>ε =

X̃\Y .
The hyperbolic metric is complete in H2, so it is complete in the com-

pact thick part M>ε. The thin part is isometric to a subsurface of the trac-
tricoid so the entire surface is hyperbolic and complete. [Bon09] gives an
alternate elementary proof that the hyperbolic metric on Y is isometric to
the natural metric on the tractricoid.

1.13. Developing map and holonomy

Let X be a connected real analytic manifold and G a group of real an-
alytic diffeomorphisms acting transitively on X . A (G,X) manifold is a
manifold M with a geometric structure given by a covering of M with
charts φi : Ui → X which map the open connected subsets Ui diffeomor-
phically onto open subsets of X . Whenever Ui and Uj overlap, the transi-
tion map is defined to be φjφ−1

i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj), and is the
restriction of an element in G. In the case where G acts by isometries on
X , this means that M is locally isometric to X .

If the geometric structure on (G,X) is analytic, then the analytic con-
tinuation of coordinate charts gives a global coordinate chart, or developing
map, on the universal cover M̃ of M . Given a basepoint x0 and an initial
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chart φ0, the developing map is a map D : M̃ → X that agrees with the
analytic continuation of φ0 along each path and in the neighbourhood of the
endpoints of the path. In other words, if p : M̃ → M is the universal cov-
ering map, α : [0, 1] → M is a path with α(0) = x0, and φα0 is the analytic
continuation of φ0 along α, then the developing map D = φα0 · p along α
and in a neighbourhood of α(1).

Let γ ∈ π1(M) and consider the initial chart φ0 and the analytic contin-
uation φγ0 along a loop representing γ. Since φ0 and φγ0 are comparable as
they are both defined in a neighbourhood of the basepoint x0 in M . Since
G acts transitively on X , there exists gγ ∈ G such that φγ0 = gγφ0 when
restricted to a neighbourhood of the base point. The map ρ : π1(X) →
G, γ 7→ gγ is a homomorphism and is called the holonomy representation
for the geometric structure. A detailed discussion of the above is given in
[Thu97].



CHAPTER 2

The Epstein-Penner Decomposition

2.1. Introduction

A decomposition of a manifold into cells, or a cell decomposition, is a
useful tool in studying cusped hyperbolic n-manifolds. A particularly pow-
erful construction is the Epstein-Penner convex hull construction [EP+88],
as it gives rise to canonical cell decompositions of finite volume, hyperbolic
n-manifolds with k ≥ 1 cusps. Applications of the Epstein-Penner con-
struction include a cell decomposition of Teichmüller space [Pen87] and
the creation of a database of cusped hyperbolic 3-manifolds [CHW99].

2.2. Convex hull construction

Suppose a hyperbolic surface S is connected, complete, topologically
finite, has finite volume and has k ≥ 1 cusps. Let S ∼= D/Γ, where Γ is
a torsion-free, discrete group of isometries, and assume Γ is finitely gener-
ated.

We liftD/Γ into Minkowski space by projecting its universal coverD to
the hyperboloid model H . Then S ∼= D/Γ ∼= H/Γ̃, where Γ̃ < SO+(1, 2)
is the group Γ conjugated by the radial projection map ρ : D → H . We
call this group isomorphism ϕ : Γ → Γ̃, x 7→ ρxρ−1. Parabolics g ∈ Γ
fixing the parabolic fixed point pi ∈ ∂D are lifted to a parabolic element
ϕ(g) ∈ Γ̃ fixing the ray λpi ∈ L, λ ∈ R. In the case where Γ is represented
by matrices in PSL(2,R), the isomorphism ϕ : Γ → Γ̃ is the one given in
section 1.6.

The cell decomposition of D/Γ proceeds as follows. A vector λipi ∈
L+ chosen on the positive ray through pi is called a light-cone representa-
tive of pi. Choose a light-cone representative vpi for each parabolic fixed
point pi of Γ such that the set of light-cone representatives B = {vpi} is Γ̃-
invariant. One way to ensure that B is Γ̃-invariant is to choose a light-cone
representative λpi for a parabolic fixed point pi, and then take the Γ̃-orbit of
λpi to be the light-cone representatives for the parabolic fixed points Γ · p.
This ensures that B consists of Γ̃-orbits, with one Γ̃-orbit for each cusp of
S.

15
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Then by Theorem 2.2, B is discrete. Take the convex hull C of B and
project the faces of ∂C radially onto the Klein modelD. Since the construc-
tion of C is equivariant under the group Γ̃, the faces of C are equivariant
under Γ̃, so the projection onto D is Γ-invariant and induces a cell decom-
position of D/Γ.

Lemma 2.1. There exists λ ∈ R so that the horoballs corresponding to λB
are pairwise disjoint. In other words, the horoballs {hw : w ∈ λB} are
pairwise disjoint, where hw = {x ∈ H : 〈w, x〉 = −1}.
Proof. If we take a thick thin decomposition {S≥ε, S<ε} of our surface S,
where ε < ε2 ≈ 0.88, then each cusp of S lies in a different component
of the thin part S<ε. Suppose there exists λ ∈ R such that all horoballs
{hw : w ∈ λB} are in the thin part. In other words, hw/Γ ⊂ S<ε, i.e.
injectivity radius r(x) of x ∈ hw/Γ is less than ε.

The Γ-orbits of any horoball hw ⊂ S<ε must be disjoint, since x ∈
hw ∩ g · hw, g ∈ Γ implies there is a non-parabolic loop of length < ε
based at x, contradicting Margulis Lemma. For two horoballs hwi

and hwj

lying in distinct components, then hwi
and hwj

must be disjoint and their
lift into the universal cover D will also be disjoint. Hence, if all horoballs
{hw : w ∈ λB} lie in the thin part, then the hw are pairwise disjoint.

It remains to show that λ may be chosen such that all horoballs {hw :
w ∈ λB} are in the thin part. Equivalently, for each x ∈ hw/Γ, the injectiv-
ity radius r(x) < ε. Hence, we need to calculate the injectivity radii in the
space hw/Γ, which can be conveniently done in the upper halfspace model
H2.

Consider peripheral subgroups 〈g−1γig〉, γi, g ∈ Γ of the ithcusp. Now
represent γi ∈ Isom(H2) as an element in PSL(2,R) and conjugate γi so
that its parabolic fixed point is at∞. Then γi ∈ PSL(2,R) is ( 1 a

0 1 ). Note
that this matrix in PSL(2,R) is independent of which peripheral subgroup
we chose for the ith cusp since all peripheral subgroups are conjugate. The
fractional linear transformation corresponding to ( 1 a

0 1 ) is the map τa = z 7→
z + a. Suppose we have a horoball based at∞ quotiented by τa. Then the
horoball is lb = {x + iy : y > b} modulo τa. The injectivity radius of
lb/τa ⊂ H2/τa is maximal on its boundary. The metric on the horoball
{x + ib} is Euclidean with a scaling factor of 1

b
, hence, the length of the

boundary of the horoball lb/τa is a
b
. Hence, a

b
< ε, then the injectivity

radius of points in lb/τa will be less than ε.
Now we want to find the injectivity radii of hw/Γ ⊂ S. Suppose w has

first coordinate, or height, w1 in R3. Then by Lemma 1.2, this horocycle
has Euclidean radius 1

1+w1
in the Poincaré Disk model. Furthermore, by

Lemma 1.1, if the horocycle is conjugated to be centred at∞, it would be
lw1 = {x + iy : y > w1} in the upper halfspace model. But w1 > a

ε
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implies that lw1/τa has injectivity radius r(x) < ε. Hence, for hw/Γ to have
injectivity radius less than ε, we need the first coordinate w1 to be greater
than a

ε
.

Hence, define λ as follows. For each Γ̃-orbit Bi ⊂ B choose a point
w ∈ Bi. The choice of w ∈ Bi does not matter as they all correspond to
the same horoball S. Calculate the peripheral element which fixes w, and
find its conjugate representation ( 1 ai

0 1 ) in PSL(2,R). Then choose λi >
ai
εw1

, λi ∈ R. The height of λw is λ1w1 >
ai
ε

, so the horoball corresponding
to λw has injectivity radius < ε. Hence, the horoball corresponding to Bi

lies in the Margulis region S<ε. Hence if we define λ = maxki=1 λi, then the
horoball corresponding to the orbit Bi will be in the thin part of S. Hence,
all horoballs hw = {x ∈ H : 〈w, x〉 = −1} are pairwise disjoint. �

Theorem 2.2. The set B is discrete.

Proof. We will instead prove that λB is discrete for the λ ∈ R provided by
Lemma 2.1. Suppose λB is not discrete, hence there is an accumultation
point. There is a lower halfspace Ty = {x = (x1, x2, x3)} ∈ R3, x1 < y
which includes the point of accumulation, so λB ∩ Ty has infinitely many
points.

Any point w ∈ λB ∩ Ty has height w1 < y. Let w be the light-like
representative of the horoball hw, . Then by Lemma 1.2, the horoball hw
has Euclidean radius 1

1+w1
in the Poincaré Disk model. So for every w ∈

λB ∩ Ty, its corresponding horoball hw has Euclidean radius at least 1
1+y

in the Poincaré model. But the horoballs hw with light-like representatives
in λB are disjoint, by Lemma 2.1. Hence, we have infinitely many disjoint
horoballs of Euclidean radius at least 1

1+y
, and this is impossible since the

Poincaré Disk has finite area. �

Theorem 2.3. The convex hull construction associates a (k−1)-parameter
family of Γ-invariant cell decompositions of D. In particular if k = 1 then
the decomposition of the surface D/Γ is canonical.

Proof. The cell decomposition of D/Γ can be altered if we change the Γ̃
orbits Bi to αiBi, where αi ∈ R+, 1 ≤ i ≤ k. However, if α1 = α2 =
... = αk, the orbit B is dilated by α1 so its projection onto D is unchanged.
Therefore we have a (k − 1)-parameter family of cell decompositions of
D/Γ. �

Remark 2.4. If k ≥ 2 and we choose αiBi so that their corresponding
horoballs bound the same area in S, then we have a canonical cell decom-
position for S.
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2.3. Example

Take the once punctured torus with complete hyperbolic structure de-
fined in Section 1.12. The space is given by H2/Γ where Γ = 〈A,B〉,

A =

(
2 1
1 1

)
, B =

(
2 −1
−1 1

)
,

with commutator

ABA−1B−1 =

(
−1 −6
0 −1

)
.

so [A,B] is parabolic with parabolic fixed point at∞.
Now we let H2/Γ ∼= H/Γ̃ where H is the hyperboloid model and Γ̃ <

SO+(1, 2) is a discrete, freely acting subgroup with two generators. The
construction of Γ̃ from Γ ⊂ PSL(2,R) is given in 1.6, and the matrices
corresponding to A,B are

Ã =




7
2

3 3
2

3 3 1
3
2

1 3
2


 , B̃ =




7
2
−3 3

2
−3 3 −1

3
2
−1 3

2


 .

The commutator is

[Ã, B̃] =




19 6 18
6 1 6
−18 −6 −17


 ,

and since


19 6 18
6 1 6
−18 −6 −17


 = P




1 1 0
0 1 1
0 0 1


P−1, P =




36 18 1
0 6 0

−36 −18 0




the commutator is indeed a parabolic element of SO+(1, 2). The one di-
mensional invariant subspace is λ(1, 0,−1), λ ∈ R, so the commutator
[Ã, B̃] is a peripheral element of Γ̃ with a fixed point at vp = (1, 0,−1).
The peripheral subgroups of Γ̃ are conjugate to 〈[Ã, B̃]〉. As there is only
one cusp in the once punctured torus, these are the only peripheral sub-
groups. Hence, set of the parabolic fixed points of Γ̃ is the Γ̃ orbit of vp. To
obtain the canonical cell decomposition, take the convex hull of this orbit
and projecting it onto D/Γ.

However, calculating the convex hull of the infinite orbit Γ̃ · vp is com-
putationally infeasible if done naively. We will need the edge flipping algo-
rithm in Chapter 5 or Weeks’ Algorithm [Wee93] to calculate the canonical
cell decomposition efficiently.
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FIGURE 2.3.1. The orbit N3vp on the light-cone (blue).

Without such algorithms, the best we can do is to approximate the
infinite convex hull by computing finitely many points in the orbit. Let
N = {Id, Ã, B̃, Ã−1, B̃−1} be a neighbourhood of the identity in the Cay-
ley graph of Γ̃ with respect to the natural generating set. Then Nk consists
of the group elements distance at most k from the identity. Hence, Nkvp
are parabolic fixed points on the light-cone (see Figure 2.3.1) and its con-
vex hull (see Figure 2.3.2) gives a finite approximation to the convex hull
of Γvp. Projecting the convex hull of N3vp onto the Klein model gives an
approximation to the the canonical cell decomposition (see Figure 2.3.3).
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FIGURE 2.3.2. The orbit N3vp and its convex hull (green).

FIGURE 2.3.3. The projection of the convex hull of N3v∞
onto the Klein model D.



CHAPTER 3

Background - Projective Geometry

3.1. The real projective plane

Let ∼ be an equivalence relation on x, y ∈ R3, where x ∼ y if and only
if x = λy for some λ ∈ R\{0}. Then points are equivalent if and only if
they lie on the same line through the origin. The quotient

RP 2 := (R3\{0})/ ∼

is called the real projective plane. Therefore, the real projective plane RP 2

is the set of all lines in R3 passing through the origin, and lines in RP 2

correspond to planes in R3.
Each ∼-equivalence class of RP 2 intersects the unit sphere S2 ⊂ R3

at two points. Therefore, another definition of the real projective plane is
RP 2 := S2/ ± 1 with quotient map π : Sn → RP 2. The quotient map is
a double cover in that for any a ∈ RP 2, there is a unique pair of antipodal
points such that π(x) = a and π(−x) = a.

Any linear transformation of R3 preserves equivalence classes of ∼ so
it induces a tranformation of RP 2. The group of transformations of RP 2,
called projective transformations, is the projective general linear group
PGL(3,R). The group PGL(3,R) is isomorphic to GL(3,R) quotiented
by scalar multiplication. Furthermore, the map A 7→ (detA)

1
3A defines

an isomorphism between PGL(3,R) and SL(3,R), where SL(3,R) is the
group of 3× 3 matrices of determinant 1.

LetA,B,C,D ∈ RP 2 be collinear, in other words, the linesA,B,C,D ∈
R3 are coplanar. Let P be a line in R3 which intersects A,B,C,D at four
distinct points a, b, c, d in that order. Then the cross ratio of A,B,C,D is
defined to be

(A,B;C,D) =
|ac||bd|
|ab||cd| ,

where | · | is the Euclidean distance. The cross ratio is a projective invariant
in that it is independent of P and is preserved by any projective transforma-
tion.

21
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3.2. Strictly convex domains

A set C ∈ RP 2 is called convex if the intersection of any projective line
with C is connected. An affine patch of is a subset of RP 2 by deleting a
projective line. A convex set is properly convex if its closure is contained
in an affine patch. A properly convex set is called strictly convex if its
boundary does not contain any lines of positive length.

For any strictly convex domain Ω ⊂ RP 2, π−1(Ω) consists of two
copies of X in S2. If Ω lies in an affine patch A ⊂ RP 2, then π−1(Ω) ⊂
π−1(A) = Hem+ ∪ Hem−, where Hem+, Hem− ⊂ S2 are two open
hemispheres with boundary ∂Hem+ = ∂Hem− = l where l ⊂ S2 is a
great circle. Hence, we have two disjoint components of π−1(Ω), we iden-
tify Ω with the component Ω+ ∈ Hem+ and define the positive light-cone
of Ω to be L = R+ · ∂Ω+ ∈ R3.

Any strictly convex set Ω has a complete metric defined as follows:
identify Ω with a component Ω+ ⊂ Hem+ in the double cover and project
Ω+ radially onto a plane P that does not pass through the origin. Let the
radial projection of points p, q ∈ Ω+ and domain Ω+onto P be , p̄, q̄ and
the domain Ω̄. Let the line p̄q̄ intersect the boundary ∂Ω̄ at points ā, b̄ so
that ā, p̄, q̄, b̄ are in that order, and define the distance between p, q ∈ Ω be
defined by the cross ratio

d(p, q) =
1

2
log
|q̄ā||b̄p̄|
|p̄ā||q̄b̄| ,

where | · | denotes the Euclidean distance on P . Note that the disance d(p, q)
is independent of choice of projection plane P as cross ratios are projec-
tively invariant. The metric d is called the Hilbert Metric on the strictly
convex set Ω.

Note that the metric on the Klein model coincides with its Hilbert met-
ric, hence, the hyperbolic geometry coincides with geometry on a projective
disk. A strictly convex domain Ω has hyperbolic geometry if and only if its
projection Ω̄ is isometric to the Klein disk, i.e. when Ω is an ellipse.

3.3. Projective Transformations of a strictly convex domain

The group of projective transformations on the strictly convex domain
Ω are the elements of PGL(3,R) which fix Ω, which we will denote by
PGL(Ω).

Then PGL(Ω) is isomorphic to group of linear transformations of R3

which stabilise the component Ω+ ∈ RP 2. Hence, PGL(Ω) ∼= SL±(Ω),
where SL±(Ω) is the group of 3 × 3 matrices of determinant ±1 which
stabilises Ω+ ⊂ R3.
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Similarly to the hyperbolic setting, we define an projective transforma-
tion A ∈ PGL(Ω) to be elliptic if A fixes a point in Ω. Otherwise, A acts
freely on Ω and is called parabolic if every eigenvalue has modulus 1 and
hyperbolic otherwise. A point p ∈ ∂Ω is called a parabolic fixed point of a
group Γ if there is a parabolic element A ∈ Γ such that Ap = p.

3.4. Convex Projective Manifolds

Any strictly convex, finite volume real projective surface can be writ-
ten as S = Ω/Γ, where Ω is strictly convex and Γ ∼= π1(S) ⊂ PGL(Ω)
is a free, discrete group of projective transformations. The Hilbert metric
defines a metric on S and the notion of volume.

A thorough discussion of strictly convex projective manifolds and cusps,
as well as proofs for Theorems 3.1 and 3.2, can be found in [CLT11].

Theorem 3.1 simplifies for projective surfaces. Virtually nilpotent mplies
the subgroup of π1(S, x) is infinite cycle with either a hyperbolic of para-
bolic generator. Respectively, these correspond to the thin component of
x being an annular neighbourhood of a short geodesic or cusp end. If S
has finite volume, then the cusp end is projectively equivalent to hyperbolic
cusps, meaning their holonomies are conjugate to

(
1 1 0
0 1 1
0 0 1

)
.

Theorem 3.1. (Properly Convex Margulis) For n ≥ 2 there is a Margulis
constant µn such that any properly convex projective n-manifold M and
any point x ∈ M , the subgroup of π1(M,x) generated by loops based at x
of length less than µn is virtually nilpotent.

Theorem 3.2. (Strictly Convex Thick-Thin) LetM be a finite volume, strictly
convex projective n-manifold. ThenM = A∪B, whereA andB are smooth
submanifolds and Ā ∩ B̄ = ∂A = ∂B, B is compact and non-empty and A
is possibly empty with the following properties:

a) If inj(x) < νn then x ∈ A, where inj(x) is the injectivity radius of
M at x, and νn = 3−(n+1)µn.

b) If x ∈ A then inj(x) < µn.
c) Each component of A is a Margulis tube or a cusp.

3.5. The projective once punctured torus

Theorem 3.3. There is a 6 dimensional parameter space of projective struc-
tures on the once punctured torus, given by the points

Q = {(c1, c2, b1, a, b, e) ∈ R6|c1 > 1, c2 > 1, a2b1 > 1, a, b, e > 0}
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where

a2 =

a3b3e6 + a3bb1e
5 − a6b1c1c2 − 2 a3b2e4 − b2e7 + a6b1c1

+ a3bc1c2e
2 +

(
a6b2c1 − a6b2 −

(
a6b2c1 − a6b2

)
c2

)
e

a3b3b1e
6 − b4e8 +

(
a3b3c1 − a3b3

)
c2e

3

+
(
a6b2b1c1 − a6b2b1 −

(
a6b2b1c1 − a6b2b1

)
c2

)
e

.

The ideal polyhedral decomposition of these once punctured tori is an ideal
quadrilateral with opposite edges glued. Fixing the four vertices of the ideal
quadrilateral




1
0
0


 ,

1√
3




1
1
−1


 ,




0
1
0


 ,




0
0
1


 ∈ S2.

fixes the gluing matrices up to conjugation. The point (c1, c2, b1, a, b, e)
corresponds to the pair of matrices

Ẽ =



ab1 + ac1

be2
a a

be2

ab1 − be2

aa
a 0

−ab1 −a 0


 ,

F̃ =



a2b 0 a2b− 1

be
−b 0 −b
c2b e bc2 + e


 .

which represent orientation preserving isometries with parabolic commu-
tator. Furthermore, for each point (c1, c2, b1, a, b, e) ∈ Q, there is a strictly
convex domain Ω ∈ RP 2 such that Ω+/〈Ẽ, F̃ 〉 homeomorphic to the once
punctured torus.

Proof. Let T be a once punctured torus with fundamental group π1(T ) =
〈E,F 〉 and let ρ : π1(T ) → SL±(3,R) be a representation of the funda-
mental group into SL±(3,R). Assume further that there exists a strictly
convex domain Ω ⊆ RP 2 such that ρ corresponds to a strictly convex pro-
jective structure, i.e. ρ(π1(T )) < SL±(Ω) and T ∼= Ω/ρ(π1(T )).

Let a fundamental domain of T be given by the convex quadrilateral
Y = {p1, p2, p3, p4} in the double cover S2 of the projective plane, with the
points in clockwise order and corresponding to the puncture.

Then, ρ(E), ρ(F ) are the gluing equations of Y which make Ω/〈E,F 〉
the projective once punctured torus.

Now let h ∈ SL±(3,R) be a matrix satisfying

h(p1) = e1 =




1
0
0


 , h(p2) = e2 =




0
1
0


 , h(p3) = e3 =




0
0
1


 .
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Then the conjugate representation hρh−1 has parabolic fixed points at those
standard basis vectors. Hence, if we consider only representations up to
conjugation we can assume without loss of generality that the vertices of Y
are {e1, p, e2, e3} for some p ∈ S2.

Consider g ∈ GL(3,R) of the form

g =



λ 0 0
0 µ 0
0 0 ν




where λ, µ, ν ∈ R+. Then g fixes the rays through e1, e2, e3, and g sends p
to any element in S2 we want. Hence we can assume that the fourth vertex
of Y is

p =
1√
3




1
1
−1


 .

This fixes the vertices {e1, p, e2, e3} of convex quadrilateral Y ⊂ S2 and
fixes ρ in its conjugacy class.

Now the pair of gluing equations on Y are E,F ∈ π1(T ), where E
sends e2 → p, e3 → e1 and F sends p → e1, e2 → e3. Then in terms of
SL±(3,R) we have

Ẽ




0
1
0


 = a




1
1
−1


 , Ẽ




0
0
1


 = d




1
0
0




and

F̃




0
1
0


 = e




0
0
1


 , F̃




1
1
−1


 = m




1
0
0




where Ẽ = ρ(E), F̃ = ρ(F ) and a, d, e,m ∈ R+. To fix Ẽ, F̃ ∈ SL±(3,R)
we need one more equation for each of E and F .

Let

Ẽ



u
v
w


 =




0
1
0


 , F̃




1
0
0


 =



x
y
z




where x, y, z, u, v, w ∈ R.
Since the quadrilateral with vertices



u
v
w


 ,




0
0
1


 ,




1
0
0


 ,




0
1
0
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w


 = l




−1
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c1







0
1
0




Ẽ

Ẽ

Ẽ
F̃
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F̃

FIGURE 3.5.1. The action of Ẽ, F̃ on the ideal vertices of
Y and two additional points, forming a convex hexagon.

is convex, the points
(
u
v
w

)
,
(

0
1
0

)
must lie on the same side of the great circle

through
(

0
0
1

)
,
(

1
0
0

)
. Hence, u > 0. Similarly, we obtain the inequalities

u < 0, v > 0, w > 0, x > 0, y < 0, z > 0. We reparametrise our
variables

(u, v, w) = (−l, lb1, lc1), (x, y, z) = (a2b,−b, c2b),

where l, b1, c1, b, a2, c2 ∈ R+. Furthermore, cross-ratio invariants give the
inequalities c2 > 1, c1 > 1, a2b1 > 1, and details can be found in [G+90].
The set-up is slightly different but turns out to be equivalent. Now we can
write the matrix form of Ẽ and F̃ .

Ẽ =



a d 0
a 0 1
−a 0 0






0 0 −l
1 0 lb1

0 1 lc1



−1

=



ab1 + c1d a d
ab1 − 1

l
a 0

−ab1 −a 0




F̃ =




0 m a2b
0 0 −b
e 0 c2b






0 1 1
1 1 0
0 −1 0



−1

=



a2b 0 a2b−m
−b 0 −b
c2b e bc2 + e
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Since Ẽ, F̃ ∈ SL(3,R), we have two equations from det(Ẽ) = ad
l

and
det(F̃ ) = bem. Hence we can let l = ad and m = 1

be
to give

Ẽ =



ab1 + c1d a d
ab1 − 1

ad
a 0

−ab1 −a 0


 ,

F̃ =



a2b 0 a2b− 1

be
−b 0 −b
c2b e bc2 + e


 .

This gives a parametrisation of all pairs of matrices gluing the opposite
of Y together in S2. We also require the ideal vertices of Y on ∂Ω to be
parabolic fixed points, so the peripheral subgroup corresponding to e1 must
be a parabolic transformation. The peripheral element at e1, by inspection,
is EFE−1F−1, and the representation in SL±(3,R) is of the form

[Ẽ, F̃ ] =




bde2

a
∗ ∗

0 ∗ ∗
0 ∗ ∗


 .

where ∗ are algebraic expressions in terms of our 8 remaining variables.
For the commutator to be parabolic with a parabolic fixed point at e1, we
must have [Ẽ, F̃ ]e1 = e1 and tr[Ẽ, F̃ ] = 3. The first condition enforces
d = a

be2
whereas the second conditions gives an equation linear in a2. Hence

we can eliminate a2 with the reparametrisation

a2 =

a3b3e6 + a3bb1e
5 − a6b1c1c2 − 2 a3b2e4 − b2e7 + a6b1c1

+ a3bc1c2e
2 +

(
a6b2c1 − a6b2 −

(
a6b2c1 − a6b2

)
c2

)
e

a3b3b1e
6 − b4e8 +

(
a3b3c1 − a3b3

)
c2e

3

+
(
a6b2b1c1 − a6b2b1 −

(
a6b2b1c1 − a6b2b1

)
c2

)
e

Moreover, with this substitution, all eigenvalues of [Ẽ, F̃ ] are 1 and the
Jordan canonical form of the commutator is the standard parabolic

[Ẽ, F̃ ] ∼




1 1 0
0 1 1
0 0 1


 .

Hence, we have a 6 parameter space of projective structures, and the repre-
sentation Ẽ, F̃ always has parabolic commutator. Moreover, all peripheral
subgroups of 〈Ẽ, F̃ 〉 are of the form 〈g[Ẽ, F̃ ]g−1〉 where g ∈ 〈Ẽ, F̃ 〉.
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Now, by Corollary 4.6 in [Mar10], since our representation is discrete
and faithful, peripheral subgroups are parabolic and the space is homeo-
morphic to the once punctured torus, the space Q is homeomorphic to the
moduli space of marked properly convex projective structures on a finite
volume once punctured torus. �



CHAPTER 4

Generalisation of the Epstein-Penner Construction to
Projective Manifolds

4.1. Cooper-Long’s Construction

The Cooper-Long Construction [CL13] is a generalisation of the Epstein-
Penner construction in the case of strictly convex projective manifolds. Its
construction is analogous to the Epstein-Penner construction in Chapter 2.

Let Ω be a strictly convex domain and suppose S = Ω/Γ is a finite
volume, strictly convex projective surface with k ≥ 1 cusps. For p ∈ ∂Ω,
call any point λp ∈ L = R+ · ∂Ω+ a light-cone representative of p.

For each parabolic fixed point pi ∈ ∂Ω of Γ, take a light-cone represen-
tative vpi of pi so that the set B = {vpi} is Γ-invariant. This can be done by
choosing a light-cone representative λpi for a parabolic fixed point pi, and
taking its Γ-orbit in L. There is one such Γ-orbit for each of the k cusps of
S.

Since B is discrete, let C be convex hull of B. The polyhedron C is
Γ-invariant since B is Γ-invariant. Therefore, the projection of the faces
∂C onto Ω is Γ-invariant and induces a cell decomposition of Ω/Γ.

Theorem 4.1. B is discrete.

Proof. See [CL13]. The argument is a generalisation of the argument in
Theorem 2.2. The difficulty is that horospheres are defined via Busemann
functions and are not circles in general, making the volume argument less
straightforward. �

Theorem 4.2. The convex hull construction associates a (k−1)-parameter
family of Γ-invariant cell decompositions of Ω. In particular if k = 1 then
the decomposition of the surface Ω/Γ is canonical.

Proof. Same as Theorem 2.3. �

4.2. Example

Consider the projective structure corresponding to the point (8, 2, 3, 7, 1, 2)
in Theorem 3.3. The corresponding matrices can be calculated to be:

29
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Ẽ =




35 7 7
4

1025
49

7 0
−21 −7 0


 , F̃ =




2202467
2418621

0 1986313
4837242

−1 0 −1
2 2 4


 .

The commutator

[Ẽ, F̃ ] =




1 11437407629
9674484

11508050281
19348968

0 5871445
806207

19811401
4837242

0 −7770264
806207

−4259031
806207




is indeed parabolic, since

[Ẽ, F̃ ] = P




1 1 0

0 1 1

0 0 1


P−1, P =




1 11437407629
9674484

11508050281
19348968

0 5871445
806207

19811401
4837242

0 −7770264
806207

−4259031
806207


 .

Hence, by Theorem 3.3, the space Ω/Γ is a projective once punctured torus,
where Γ = 〈Ẽ, F̃ 〉 and Ω is some strictly convex subset of RP 2.

The commutator [Ẽ, F̃ ] has a unique one dimensional invariant sub-
space (λ, 0, 0). Since the once punctured torus has only one cusp, the
Cooper-Long convex hull construction is just the convex hull of the Γ-orbit
of any light-cone representative, e.g. e1 = (1, 0, 0).

The convex hull C cannot be calculated naively as there are infinitely
many vertices. We must appeal to the edge flipping algorithm in Chapter
5 to compute the canonical cell decomposition in finite time. Note that
Weeks’ Algorithm in [Wee93] does not apply in this case since Weeks’ tilt
formula is specific to the hyperbolic setting.

Again, we will do the best we can without the algorithm in Chapter 5,
and approximate the convex hull C by computing finitely many points on
the orbit. Let N = {Id, Ẽ, F̃ , Ẽ−1, F̃−1} and take the finite orbit Nke1

(see Figure 4.2.1). Then take the convex hull Ck of the orbit Nke1 (see
Figure 4.2.2). Project the faces of Ck onto the sphere S2. These faces
are on an affine patch Hem+. We flatten the affine patch by taking the
orthogonal projection of points on Hem+ onto the plane through ∂Hem+

(see Figure 4.2.3).
Notice in Figure 4.2.3 we have finitely many points on the boundary Ω+,

and this gives us an approximate shape for the domain Ω+. The parabolic
fixed points of Γ is dense in Ω+ for any Γ discrete and freely acting. So
with enough points in our orbit B ∈ L, we can obtain an arbitrarily fine
approximation to the boundary of Ω+.
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FIGURE 4.2.1. The orbit N3e1.

FIGURE 4.2.2. The orbit N3e1 and its convex hull (green).
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FIGURE 4.2.3. The projection of the convex hull of N3v∞
onto an affine patch of S2.



CHAPTER 5

Edge Flipping Algorithm for the Epstein-Penner
Construction

5.1. Introduction

The first use of an edge flipping algorithm was by Lawson [Law77] to
compute Delauney triangulations. Edge flipping algorithms use a sequence
of local modifications to arrive at a globally optimal solution, and decisions
on which edge to flip come from purely local considerations. Edge flipping
algorithms also work well in computing convex hulls [GCTH13], however,
these algorithms are not applicable as our case involve infinitely many ver-
tices.

Weeks’ algorithm [Wee93] is an edge flipping algorithm to compute the
canonical cell decomposition of a cusped n-manifold. Weeks’ algorithm
is only proven to be correct for n = 2, in higher dimensions it is only
a heuristic procedure. The algorithm is included in the software package
SnapPea which has many applications, such as a census of all cusped finite
volume hyperbolic 3-manifolds [Bur14] or computing arithmetic invariants
of hyperbolic 3-manifolds [CGHN00].

In this chapter an alternative algorithm is provided, its advantages over
Weeks’ algorithm are it is simpler to calculate, and may be extended to
strictly convex projective surfaces.

5.2. The Algorithm

The crucial difference between the proposed algorithm and Weeks’ is
the method of detection of convex angles. The Weeks’ tilt formula [Wee93]
and its generalised versions [SW95], [Ush02] rely heavily on the Minkowski
metric whereas the proposed algorithm does not use the underlying metric
of the space.

The new method is to checks the following property of a convex hull: if
F is a face of the convex hull C, all other vertices of the polyhedron are on
the same side of XF , where XF is the plane through F . In the case where
C is the convex hull of the Γ-invariant discrete subset B on a light-cone L,
the plane XF separates R3 into two components. If F is a face of C, then
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the interior of the polyhedron C lies entirely in one component of R3\XF ,
and the other component contains the origin.

Define the neighbouring faces of F to be the faces which share an edge
with F . Define the vertex of a neighbouring face which is not on the shared
edge to be a neighbouring vertex of F . LetXF be the plane passing through
F . If v and the origin lie in the same component of R3\XF , then we say v
is below the face F . If v and the origin lie in different components then v is
above the face F . Otherwise v is on the plane XF and is coplanar with F .

Define an edge flip on F and a neighbouring vertex v to be the edge flip
which removes the common edge. If the vertices of F are {a, b, c} where ab
is the common edge, then the edge flip creates the two new faces {c, v, a}
and {c, b, v}. We call an edge flip admissible if v is below F .

We call F locally convex if each neighbouring vertex v is either above
F or coplanar with F . Equivalently, F is locally convex if there are no
admissible edge flips which include face F .

Let Ω be a strictly convex domain in RP 2, for example, the Klein model
of hyperbolic space. The edge flipping algorithm is as follows. Let the
projective surface be Ω/Γ where Γ ⊂ SL±(Ω) is freely acting, discrete
and finitely generated. We start with an arbitrary cell decomposition of
Ω/Γ into ideal triangles, its existence is ensured by Lemma 1.5. The ideal
triangulation projects to a Γ-invariant polyhedron with Γ-invariant vertices
on the light-cone L.

For a face F on the Γ-invariant polyhedron, we call Γ · F the face class
of F . Proposition 5.1 shows that F is locally convex if and only if gF is
convex, where g ∈ Γ. Hence, it makes sense to call a face class Γ ·F locally
convex.

For each face class Γ · F , we check the neighbouring vertices for any
admissible edge flips. If there is an admissible edge flip, then it is performed
(replacing Γ ·F and another face class with two different face classes). This
gives a different Γ-invariant polyhedron with vertices on the light-cone L,
and the entire algorithm starts again.

If there are no admissible edge flips, another face class is checked. Al-
though there are infinitely many faces in the polyhedron, there are only
finitely many face classes.

The algorithm terminates when there are no more admissible edge flips.
The algorithm terminates in finitely many steps (Theorem 5.5). Moreover,
the Γ-invariant polyhedron in the final iteration is convex (Proposition 5.3).

There is one final step in the algorithm to make the polyhedron equal
to C. Even though our polyhedron is convex, since each face class is a
triangle, the polyhedron is actually a triangulation of ∂C. We call an edge
of a polyhedron redundant if it lies in the interior of a face of ∂C. Note that
an edge is redundant if and only if the two faces that meet at e are coplanar.
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After all admissible edge flips are performed, a cleanup step is applied.
If two adjacent faces are coplanar, then their common edge is removed. This
is repeated until there are no redundant edges, upon which the polyhedron
is equal to the convex hull (Theorem 5.4).

Pseudocode for this algorithm is provided below.

Algorithm 1 Edge Flipping Algorithm for the Convex Hull Construction

1: T = an arbitrary cell decomposition of Ω/Γ into triangles
2: P = Γ-invariant polyhedron induced by T .
3: for all F ∈ P/Γ̃ do
4: for all v a neighbouring vertex of F do
5: if v is below F then
6: Perform an edge flip on {v, F}
7: go to line 3
8: end if
9: end for

10: end for
11: for all e an edge of P/Γ̃ do
12: if F1, F2 sharing e are coplanar then
13: Remove e and merge F1, F2

14: end if
15: end for
16: return P

5.3. Proof of correctness

Proposition 5.1. Point p̃ lies below face F ⇐⇒ gp̃ lies below gF for all
g ∈ SL±(Ω).

Proof. Let the face F have vertices f̃1, f̃2, f̃3 on the light-cone L, and
let their projections onto the boundary ∂Ω be f1, f2, f3 respectively. Let
the projection of p̃ onto ∂Ω be p and without loss of generality assume
p, f1, f2, f3 are in clockwise order around ∂Ω.

Let the segments pf2 and f1f3 intersect at point x. Then x ∈ Ω since Ω
is strictly convex. Since p, x, f2 are collinear, the rays through p, x, f2 are
coplanar, so segment p̃f̃2 passes through a point λx, λ ∈ R+. Similarly,
segment f̃1f̃3 passes through a point µx, µ ∈ R+, but µ > λ since this is
the only case where p̃ is below face F . In particular this means that the
segment p̃f̃2 intersects the interior of triangle of̃1f̃3, where o is the origin
(see Figure 5.3.1).
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Ω
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o

FIGURE 5.3.1.

Hence, p lying below face F is equivalent to the segment p̃f̃2 inter-
secting the interior of triangle of̃1f̃3 for some ordering {f̃1, f̃2, f̃3} of the
vertices of F .

However, the intersection point of the segment and the triangle can be
written both as a convex combination of p̃, f̃2 and a convex combination of
o, f̃1, f̃3. This property is linear and preserved by any linear transformation
g ∈ GL3(R).

Hence, if g ∈ SL±(Ω), then g preserves the light-cone L and gF has its
vertices on L. Moreover, since the convex combination property is linear
and preserved by g, p̃ lies below face F if and only if gp̃ lies below gF . �

Remark 5.2. Proposition 5.1 gives an alternative way to prove that the con-
vex hull construction in Sections 2.2 and 4.1 are Γ-invariant. If F is a face
on the convex hull, then there are no other vertices of the polyhedron below
F , so the same is true for gF for all g ∈ Γ. Hence, F is a face of the convex
hull if and only if gF is a face of the convex hull, so the convex hull is
Γ-invariant.

Proposition 5.3. If polyhedron P is locally convex at every face class, then
the polyhedron is globally convex. In particular, if for every face F , v lies
above face F for every neighbouring vertex v of F , then for every face F ,
u lies above face F for every vertex u of the entire polyhedron P .

Proof. Suppose that polyhedron P is locally convex at every face, but is
not globally convex. There exists a point p̃ and a face ãb̃c̃ such that p̃ lies
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FIGURE 5.3.2.

below ãb̃c̃. Without loss of generality let the projection of ãb̃p̃c̃ be a, b, p, c
in clockwise order around ∂Ω.

Let the face of P sharing edge b̃c̃ with F have vertices b̃, q̃, c̃. Since q̃ is
a neighbouring vertex of ãb̃c̃, q̃ lies above the hyperplane passing through
ãb̃c̃. In particular, p̃q̃ lie on opposite sides of the faces ãb̃c̃ (see Figure 5.3.2).

Consider hyperplanes through ãb̃c̃ and b̃q̃c̃, which intersect along the
line b̃c̃. Let the hyperplane through ob̃c̃ divide R3 into two half-spaces, with
T+ including p̃, q̃ and T− including ã. Then ãb̃c̃ lies above b̃q̃c̃ in the half-
space T−, whereas b̃q̃c̃ lies above ãb̃c̃ in the half-space T+. Hence, b̃q̃c̃ lies
above ãb̃c̃ which lies above p in the half-space T+, so p̃ lies below b̃q̃c̃.

Hence, we have p̃ lying below b̃, q̃, c̃ instead of ãb̃c̃, where b̃q̃c̃ is “closer”
to p̃ than ãb̃c̃. Note that “closer” is well defined, as there is a unique path
of triangles from ãb̃c̃ to p̃ (this is clear if we project onto Ω). Also the path
of triangles has finite length. Hence, if we initially assume that p̃ is a point
which lies below P , and ãb̃c̃ is the closest face to p̃ such that p̃ is below it,
then we have another triangle with p̃ below it, contradicting the minimality
assumption. Hence, if P is locally convex at every face, then P is globally
convex.

�
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Theorem 5.4. If Algorithm 1 terminates, the output P is the convex hull of
the orbit B.

Proof. For each face class F ∈ P/Γ, Algorithm 1 checks that the poly-
hedron is locally convex at F . So P is locally convex at every face, so
by Proposition 2.3, P is convex. Hence the union of the faces of P is
equal to ∂C. After the cleanup step, there will be no redundant edges and
P = C. �

Theorem 5.5. Algorithm 1 terminates in finitely many iterations.

Proof. Let B be the Γ-invariant vertices of P . Define the height of a face
F to be the number of points the orbit B below the face. The height of any
face is finite sinceB is discrete, in particular 0 is not an accumulation point.
Moreover, the height of a face is Γ-invariant by Proposition 5.1. Hence, we
can define the height of the polyhedron P to be the sum of the heights of its
face classes Γ · F ∈ P/Γ.

To prove that Algorithm 1 terminates, it suffices to show that the height
of P strictly decreases after every edge flip, since the height of P is always
a non-negative integer.

Consider an edge flip ãc̃→ b̃d̃. This occurs only if c̃ lies above ãb̃d̃ and
ã lies above b̃c̃d̃. Without loss of generality let their projections onto ∂Ω be
a, b, c, d in clockwise order. Let p̃ be a point on the light-cone and without
loss of generality let the projections p, a, b, c, d be in clockwise order.

Suppose p̃ is below ãb̃d̃. Then consider the triangles ãb̃d̃ and ãb̃c̃. The
hyperplane through o, ã, b̃ divides R3 into two half-spaces, consider only
the halfspace which includes c̃, d̃, p̃. In this halfspace, we know by local
convexity that triangle ãb̃c̃ is above ãb̃d̃, which in turn is above p̃. Hence, p̃
is below ãb̃d̃ implies that p̃ is also below ãb̃c̃ (see Figure 5.3.3).

Hence, when only considering points with projection between d, a in the
strictly convex domain Ω, the points below ãb̃d̃ is a subset of points below
ãb̃c̃. By exactly the same argument the points below b̃c̃d̃ are a subset of
points below ãc̃d̃ when considering this particular part on the boundary ∂Ω.
An equivalent result is true the four other arcs ab, bc and cd by rotating the
edge labels cyclically. However, the points b̃, d̃ contribute to the heights of
ãc̃d̃, ãb̃c̃ before the edge flip, whereas no vertices contribute to the heights of
the two triangles ãb̃d̃, b̃c̃d̃. Hence, after every edge flip, the height of the two
triangles strictly decreases. The heights of all other triangles not involved
in the edge flip stay the same, so the overall result is that the height of P
strictly decreases after every edge flip. �

Remark 5.6. This edge flipping algorithm for the Epstein-Penner construc-
tion gives an alternative proof to Lemma 1.6.
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If S is the interior of a compact surface with boundary and χ(S) < 0,
then it has a complete hyperbolic structure of finite volume. Then the
Epstein-Penner construction provides a canonical cell decomposition of S.
Moreover, Theorem 5.4 together with Theorem 5.5 implies that any ideal
triangulation of S is can be modified into the canonical cell decomposition
by a finite number of edge flips and deleting a finite number of redundant
edges. Since deleting edges is not an elementary move, the two theorems
imply that any ideal triangulation of S is related to the canonical cell de-
composition but with its polygonal cells triangulated.

But any two triangulations of a polygon are also related by a finite num-
ber of edge flips. Hence, any two ideal triangulations are related to the
canonical cell decomposition plus redundant edges, so are related to each
other.

5.4. Examples

Summary. In this section a number of examples are examined:

• The once punctured torus in Section 1.12
• An extension of the previous example which requires multiple edge

flips. By generalising this method, we may generate examples which
require arbitrarily many edge flips.
• An example where the cell decomposition consists of only one cell,

an ideal quadrilateral. This corresponds to a “critical point” in the
moduli space, and neighbouring points have different cell decompo-
sitions.
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• The projective once punctured torus in Section 4.2 corresponding to
the point (8, 2, 3, 7, 1, 2) ∈ Q.
• Another projective once punctured torus, this time corresponding to

the point (4, 7, 3
2
, 1, 1, 7) ∈ Q

• A one-parameter space of projective structures lying on a segment
joining

(8, 2, 7, 2, 4, 2), (8, 2, 3, 7, 1, 2) ∈ Q
These examples are the inputs to the edge flipping algorithm. Software for
this algorithm was implemented by the author in sage and took 906 lines
of code.

Example 1. Take the once punctured torus given in Section 1.12. Our
cusped manifold has a fundamental domain with ideal vertices at p, Ap, Bp,
ABp in the Klein model, where p = ∞ is a parabolic fixed point. An ini-
tial cell decomposition of the fundamental domain consists of two triangles
{p,Ap,Bp} and {Ap,Bp,ABp}, and is the input to the edge flipping algo-
rithm. This corresponds to a Γ-invariant polyhedron with two face classes
{p, Ãp, B̃p} and {Ãp, B̃p, ÃB̃p}. We will call this polyhedron P1.

The algorithm detects that ÃB̃vp is below {vp, Ãvp, B̃vp}. An edge flip
on the triangle {p̃, Ãp, B̃p} and its neighbouring vertex ÃB̃p is performed,
giving a new triangulation. The new Γ-invariant polyhedron is called P2.

The algorithm terminates after one edge flip as all remaining face classes
are locally convex. P2 is the convex hull and induces the canonical cell de-
composition of D. The projection of P1/Γ and P2/Γ onto the Klein model
D is shown in Figures 5.4.1 and 5.4.2.

These cell decompositions of D/Γ may be developed into cell decom-
positions of D, as shown in Figures 5.4.1 and 5.4.2.

Example 2. Take the same once punctured torus as in Example 1. Let
P3 be the polyhedron after applying an edge flip to a non-admissable edge.
Instead of taking us to the canonical cell decomposition, this takes us further
away from it in that there are more edge flips required to get to the convex
hull. Continue applying non-admissible edge flips a number of times to give
a Γ-invariant polyhedron Pn. Use Pn as the input to Algorithm 1.

Pn requires many edge flips for the algorithm the terminate, in fact Pn
may need arbitrarily many edge flips. Consider a graph where points are the
possible Γ-invariant polyhedron of the Γ-orbit of vp, where vp = (1, 0,−1)
and Γ = 〈A,B〉 defined in Section 1.12. Then there are infinitely many
points in this graph, since there are infinitely many choices of a fundamental
domain for D/Γ. Each polyhedron has 3 possible edge flips, so the degree
of each vertex in the graph is 3. Hence, there are at most 4n points of
distance at most n from the convex hull, so there are infinitely many points
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with distance ≥ n for any n. Hence, Pn may need arbitrarily many edge
flips to arrive at the convex hull.

An example constructed using the method above is shown in Figure 5.4.5,
and needs 3 edge flips to reach the convex hull. Since the Epstein-Penner
decomposition is canonical, the final cell decomposition should match with
the one in Example 1. This is difficult to notice by comparing Figure 5.4.2
and Figure 5.4.5, as the fundamental domains of the two figures do not
match. However, if we develop the cell decomposition of D/Γ to a cell
decomposition of D, then it is clear that the two cell decompositions do
indeed match(see Figure 5.4.4 and Figure 5.4.6).

Example 3. In this example, the convex hullC has non-triangular faces,
and hence the cleanup step is necessary. One possibility where C has a non-
triangular face is if representations A,B can be found such that p, Ãp, B̃p
and ÃB̃p are coplanar in R3, this results in a single quadrilateral cell in
its canonical cell decomposition. Take the 2-parameter space of complete
hyperbolic structures on the once punctured torus as given in [Ser99]:

A =

(
z2+1
w

z

z w

)
, B =

(
w2+1
z

−w
−w z

)
. z, w ∈ R

Then, the points p, Ãp, B̃p and ÃB̃p ∈ R3 can be calculated in terms of
z and w. Solving for the case where the four points are coplanar gives the
relation

z =
√

1− w2.

The cell decomposition in Figure 5.4.8 corresponds to the parameters w =
0.6, z =

√
1− w2 = 0.8. The resulting cell decomposition is a single ideal

quadrilateral, as expected.
Figure 5.4.7 is the cell decomposition corresponding to the parameters

w = 0.6, z = 0.799 whereas Figure 5.4.9 is corresponds to the w = 0.6,
z = 0.801. This small perturbation in opposite direction results in two dif-
ferent cell decompositions. This is expected since the vertices of the quadri-
lateral {p̃, Ãp, B̃p, ÃB̃p} are in a degenerate position, so w = 0.6, z = 0.8
corresponds to a “critical point” of the parameter space.

Example 4. Take the projective once punctured torus in Section 4.2,
corresponding to the point (8, 2, 3, 7, 1, 2) ∈ Q. We apply the edge flipping
algorithm to find the canonical cell decomposition of Ω/〈Ẽ, F̃ 〉. An ini-
tial triangulation consists of the two triangles with vertices {e1, Ẽe1, F̃ e1}
{Ẽe1, F̃ e1, ẼF̃ e1}. Two edge flips are performed, after which no more
neighbouring vertices are below their respective faces, and our algorithm
terminates. Figure 5.4.10 show the polyhedra visited by Algorithm 1, in
particular, the figure shows its projection of its face classes onto an affine
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patch of S2. Figure 5.4.11 shows the cell decomposition of Ω/Γ developed
into a cell decomposition of Ω. The figure shows more than one face for
each face class. The ideal vertices of the triangulation are points on the
boundary. Since the set of parabolic fixed points is dense on ∂Ω, generating
many points in the orbit B gives an approximation to the shape of Ω. In
particular, by inspection, the boundary looks strictly convex and similar to
an ellipse.

Example 5. Take the projective once punctured torus with structure
given by (4, 7, 3

2
, 1, 1, 7) ∈ Q in Theorem 3.3. Then its representing ma-

trices in SL±(3,R) are

Ẽ =




29
3

1 2
3

11
2

1 0

−7 −1 0


 , F̃ =




85
69

0 13
23

−3
2

0 −3
2

21
2

1 23
2




with commutator

[Ẽ, F̃ ] =




1 182365
1242

13985
621

0 787
207

160
207

0 −4205
414

−373
207




being a parabolic element of SL±(3,R) since

[Ẽ, F̃ ] = P




1 1 0

0 1 1

0 0 1


P−1, P =




15654925
85698

182365
1242

0

0 580
207

1

0 −4205
414

0


 .

We take the light-cone representative e1 = (1, 0, 0), which is a parabolic
fixed point of the peripheral element [Ẽ, F̃ ]. The initial triangulation, and
input to the edge flipping algorithm, is the pair of triangles {e1, Ẽe1, F̃ e1}
and {Ẽe1, F̃ e1, ẼF̃ e1}. The algorithm terminates after one edge flip (see
Figure 5.4.12). Figure 5.4.13 shows the cell decomposition of Figure 5.4.12
developed in the universal cover. Unlike the previous example, the bound-
ary is not similar to an ellipse.

To check that the boundary is not an ellipse, we fit an ellipse through 5
points on the boundary, as shown in Figure 5.4.14 (note that it takes 5 points
to define an ellipse since two ellipses may intersect at 4 distinct points).
Clearly, the ellipse does not pass through all the points on the boundary.
Recall that a projective structure is hyperbolic if and only if the boundary is
the central projection of a circle, hence the projective structure defined by
(4, 7, 3

2
, 1, 1, 7) ∈ Q is not hyperbolic.
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Example 6. If we take two projective structures, for example

(8, 2, 7, 2, 4, 2), (8, 2, 3, 7, 1, 2) ∈ Q,
one way to relate the two is to examine the structures in between. In partic-
ular, we can look at the cell decompositions of the linear combinations

(1− λ)(8, 2, 7, 2, 4, 2) + λ(8, 2, 3, 7, 1, 2) ∈ Q.
This shows us how the cell decomposition of one slowly changes into the
other.

Figure 5.4.15 shows the canonincal cell decompositions of 12 evenly
spaced sample points along the line joining (8, 2, 7, 2, 4, 2) and (8, 2, 3, 7, 1, 2)
in the six dimensional parameter space Q. Only the canonical cell decom-
positions are shown. By inspection we can deduce that an edge flip occured
along this segment, in particular, between λ = 0.82 and λ = 0.91. A binary
search with more sample points would improve this estimate further.

It is worth noting that attempts to solve for the parameter λ where the
edge flip occured turned out to be equivalent to solving a degree 13 polyno-
mial. Hence, approximating the position where the edge flip occurs is the
best we can do.
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FIGURE 5.4.1. (Example 1) Projection P1/Γ onto the Klein
model.

FIGURE 5.4.2. (Example 1) Projection of P2/Γ onto the
Klein model.
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FIGURE 5.4.3. (Example 1) Projection of P1 onto the Klein
model

FIGURE 5.4.4. (Example 1) Projection of P2 onto the Klein
model
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FIGURE 5.4.5. (Example 2) Projection of polyhedra Pi/Γ
onto the Klein model. The order in which the polyhedra
were visited by the edge flipping algorithm is top left, top
right, bottom left, bottom right.
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FIGURE 5.4.6. (Example 2) Projection of polyhedra Pi
onto the Klein mode. The order in which the polyhedra were
visited by the edge flipping algorithm is top left, top right,
bottom left, bottom right.
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FIGURE 5.4.7. (Example 3) A hyperbolic structure close to
the critical point in Figure 5.4.8.

FIGURE 5.4.8. (Example 3) A critical point of the param-
eter space, where the canonical cell decomposition has one
cell.
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FIGURE 5.4.9. (Example 3) A hyperbolic structure close to
the critical point in Figure 5.4.8.
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FIGURE 5.4.10. (Example 4) Projections of Γ-invariant
polyhedra visited by Algorithm 1 for the projective structure
(8,2,3,7,1,2).
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FIGURE 5.4.11. (Example 4) Projections of Γ-invariant
polyhedra visited by Algorithm 1 for the projective structure
(8,2,3,7,1,2xa points on ∂Ωshown
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FIGURE 5.4.12. (Example 5) The intermediate cell de-
compositions for the projective structure corresponding to
(4,7,3

2
,1,1,7)
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FIGURE 5.4.13. (Example 5) The intermediate cell de-
compositions for the projective structure corresponding to
(4,7,3

2
,1,1,7)
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FIGURE 5.4.14. (Example 5) There is no ellipse passing
through all points on the boundary ∂D.
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FIGURE 5.4.15. (Example 6) The cell decompositions cor-
responding to 12 evenly spaced points along the segment
joining (8, 2, 7, 2, 4, 2), (8, 2, 3, 7, 1, 2) ∈ Q.
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